
Contents

1 Foreword 15
1.1 about this book . 16
1.2 credits . 17

2 philosophy 19
2.0.1 Collaborative . 19
2.0.2 Simplicity . 19
2.0.3 Consistent and Intuitive . 20
2.0.4 Cross-platform . 20
2.0.5 Powerful . 21
2.0.6 Extensible . 21
2.0.7 Do it with others (DIWO) . 22

2.1 OF structure . 22
2.2 project generator . 22
2.3 .h and .cpp . 23
2.4 setup/update/draw . 23
2.5 preprocessor/compiler/linker . 24

2.5.1 preprocess . 24
2.5.2 compile . 25
2.5.3 link . 26

3 C++ Language Basics 27
3.1 Look Alive! . 27
3.2 Iteration . 27
3.3 Compiling My First App . 30

3.3.1 Interlude on Typography . 32
3.3.2 Comments . 32

3.4 Beyond Hello World . 35
3.4.1 What’s with the # ? . 35
3.4.2 Namespaces at First Glance . 36

3.5 Functions . 38
3.6 Custom Functions . 41
3.7 Encapsulation of Complexity . 43
3.8 Variables (part 1) . 44

3.8.1 Naming your variable . 48
3.8.2 Naming conventions . 49

1

Contents

3.8.3 Variables change . 50
3.9 Conclusion . 55
3.10 PS. 55

4 OF structure 57
4.1 First things first . 57
4.2 Welcome to your new kitchen . 57

4.2.1 IDE: . 57
4.2.1.1 Apple Xcode . 59
4.2.1.2 Microsoft Visual Studio 2012 Express 59
4.2.1.3 Code::Blocks . 59

4.3 Running examples . 59
4.4 OF folder structure . 61

4.4.0.4 Addons . 61
4.4.0.5 Apps . 61
4.4.0.6 Examples . 62
4.4.0.7 libs . 62
4.4.0.8 other . 62
4.4.0.9 projectGenerator . 63

4.4.1 The OF Pantry: . 63
4.4.1.1 What is inside the OF pantry 63
4.4.1.2 Addons . 65

5 Graphics 69
5.1 Brushes with Basic Shapes . 69

5.1.1 Basic Shapes . 70
5.1.2 Brushes from Basic Shapes . 72

5.1.2.1 Single Rectangle Brush: Using the Mouse 72
5.1.2.2 Bursting Rectangle Brush: Creating Randomized Bursts 75
5.1.2.3 Glowing Circle Brush: Using Transparency and Color . . 77
5.1.2.4 Star Line Brush: Working with a Linear Map 79
5.1.2.5 Fleeing Triangle Brush: Vectors and Rotations 80
5.1.2.6 Raster Graphics: Taking a Snapshot 84

5.2 Brushes from Freeform Shapes . 84
5.2.1 Basic Polylines . 85
5.2.2 Building a Brush from Polylines . 87

5.2.2.1 Polyline Pen: Tracking the Mouse 87
5.2.2.2 Polyline Brushes: Points, Normals and Tangents 90
5.2.2.3 Vector Graphics: Taking a Snapshot (Part 2) 94

5.3 Moving The World . 96
5.3.1 Translating: Stick Family . 97
5.3.2 Rotating and Scaling: Spiraling Rectangles 99

5.4 Next Steps . 103

2

Contents

6 Ooops! = Object Oriented Programming + Classes 105
6.1 Overview . 105
6.2 What is OOP . 105
6.3 How to build your own Classes (simple Class) 105
6.4 make an Object from your Class . 108
6.5 make objects from your Class . 109
6.6 make more Objects from your Class . 109
6.7 make even more Objects from your Class: properties and constructors . 110
6.8 make even more Objects from your Class 112
6.9 Make and delete as you wish - using vectors 113
6.10 Quick intro to polymorphism (inheritance) 115

7 Animation 119
7.1 Background . 119
7.2 Animation in OF / useful concepts: . 119

7.2.1 Draw cycle . 119
7.2.2 Variables . 120
7.2.3 Frame rate . 120
7.2.4 Time functions . 122
7.2.5 Objects . 122

7.3 linear movement . 123
7.3.1 getting from point a to point b . 123
7.3.2 Curves . 123
7.3.3 Zeno . 125

7.4 Function based movement . 127
7.4.1 Sine and Cosine . 127

7.4.1.1 Simple examples . 128
7.4.1.2 Circular movement . 130
7.4.1.3 Lisajous figures . 131

7.4.2 Noise . 131
7.5 Simulation . 134

7.5.1 particle class . 135
7.5.2 simple forces, repulsion and attraction 136
7.5.3 particle particle interaciton . 138
7.5.4 local interactions lead to global behavior 140

7.6 where to go further . 141
7.6.1 physics and animation libraries . 141

8 Information Visualization Chapter 143
8.1 Intro . 143

8.1.1 What is data? What is information? 143
8.1.2 Steps of visualising data . 143

8.2 Working with data files in OpenFrameworks 144
8.2.1 Common data file structures: tsv, csv, xml, json 144

3

Contents

8.2.2 Example - Visualising Time Series Plot 145
8.2.2.1 ofBuffer Class . 148
8.2.2.2 Buffer Functions . 148

8.3 More Useful functions for working with data 155
8.3.1 Conversion functions (ofSplitString, ofToString, ofToInt) 155

8.4 Working with APIs . 155
8.4.1 What are APIs? . 155

8.5 Further resources . 156
8.6 References . 156

9 Experimental Game Development in openFrameworks 157
9.0.1 Popular games in open frameworks 157

9.1 How do game developers actually make games? 157
9.2 So what is OSC, anyway? . 159
9.3 Our basic game–& making it not-so-basic 161

9.3.1 Gamestates . 163
9.3.2 Player movement . 164
9.3.3 Adding adversaries . 169
9.3.4 Collisions . 172
9.3.5 Our game’s brain . 173
9.3.6 Bonus lives . 175
9.3.7 Let’s get visual . 177
9.3.8 Linking oF and OSC . 178
9.3.9 Resouces . 190
9.3.10 About us . 191

10 Image Processing and Computer Vision 193
10.1 Preliminaries to Image Processing . 193

10.1.1 Digital image acquisition and data structures 193
10.1.1.1 Loading and Displaying an Image 193
10.1.1.2 Where (Else) Images Come From 195
10.1.1.3 Acquiring and Displaying a Webcam Image 196
10.1.1.4 Pixels in Memory . 200
10.1.1.5 Grayscale Pixels and Array Indices 201
10.1.1.6 Finding the Brightest Pixel in an Image 202
10.1.1.7 Three-Channel (RGB) Images. 206
10.1.1.8 Other Kinds of Image Formats and Containers 207
10.1.1.9 RGB, grayscale, and other color space conversions . . . 209

10.1.2 Image arithmetic: mathematical operations on images 209
10.1.3 Filtering and Noise Removal Convolution Filtering 210
10.1.4 3.2. Detecting and Locating Presence and Motion 210

10.1.4.1 3.2.1. Detecting presence with Background subtraction . 210
10.1.5 3.3. Image Processing Refinements 210

10.1.5.1 3.3.1. Using a running average of background 210

4

Contents

10.1.5.2 3.3.2. Erosion, dilation, median to remove noise after
binarization . 210

10.1.5.3 3.3.3. Combining presence and motion in a weighted av-
erage . 210

10.1.5.4 3.3.4. Compensating for perspectival distortion and lens
distortion . 210

10.1.6 3.4. Thresholding Refinements . 210
10.1.7 A basic face detector. 211

10.1.7.1 SIDEBAR . 211
10.1.8 4.4. Suggestions for Further Experimentation 212
10.1.9 Suggestions for Further Experimentation 212

10.1.9.1 A Slit-Scanner. 212
10.1.9.2 Text Rain by Camille Utterback and Romy Achituv (1999). 212

11 hardware 215
11.1 introduction . 215
11.2 getting started with serial communication 216
11.3 digital and analog communication . 218
11.4 using serial for communication between arduino and openframeworks . 220
11.5 Lights On - controlling hardware via DMX 223
11.6 Raspberry Pi - getting your OF app into small spaces 226

12 Sound 233
12.1 Getting Started With Sound Files . 233
12.2 Getting Started With the Sound Stream . 235
12.3 Why -1 to 1? . 236
12.4 Time Domain vs Frequency Domain . 237
12.5 Reacting to Live Audio . 238

12.5.1 RMS . 238
12.5.2 Onset Detection (aka Beat Detection) 239
12.5.3 FFT . 240

12.6 Synthesizing Audio . 241
12.6.1 Waveforms . 241
12.6.2 Envelopes . 243
12.6.3 Frequency Control . 244

12.7 Audio Gotchas . 247
12.7.1 “Popping” . 247
12.7.2 “Clipping” / Distortion . 247
12.7.3 Latency . 247

13 Network 249
13.1 TCP vs UDP . 249

13.1.1 TCP . 249
13.1.2 UDP . 252

5

Contents

13.2 OSC . 253

14 Advanced graphics 255
14.1 2D, immediate mode vs ofPolyline/ofPath 255

14.1.1 ofPolyline . 256
14.1.2 ofPath . 257

14.2 3D . 260
14.2.1 Transformation matrices . 260
14.2.2 ofCamera . 262
14.2.3 ofMesh . 263
14.2.4 ofVboMesh . 266
14.2.5 of3dPrimitive . 267

15 That Math Chapter: From 1D to 4D 269
15.1 How Artists Approach Math . 269
15.2 About this Chapter . 270
15.3 One Dimension: Using Change . 270

15.3.1 Interpolation . 271
15.3.1.1 Linear Interpolation: The ofLerp 271

15.3.1.1.1 Note: What does linear really mean? 271
15.3.1.1.2 Exercise: Save NASA’s Mars Lander 272

15.3.1.2 Affine Mapping: The ofMap 272
15.3.1.3 Range Utilities . 273

15.3.1.3.1 Clamping . 273
15.3.1.3.2 Range Checking 274

15.3.2 Beyond Linear: Changing Change . 274
15.3.2.1 Quadratic and Cubic Change Rates 274

15.3.2.1.1 …And So On . 275
15.3.3 Splines . 276
15.3.4 Tweening . 277

15.3.4.1 Other Types of Change . 278
15.4 More Dimensions: Some Linear Algebra . 278

15.4.1 The Vector . 278
15.4.1.1 Vector Algebra . 279

15.4.1.1.1 Scalar Multiplication 279
15.4.1.1.2 Vector Addition . 279
15.4.1.1.3 Note: C++ Operator Overloading 280
15.4.1.1.4 Distance Between Points 281
15.4.1.1.5 Vector Products: There’s More Than One 282
15.4.1.1.6 The Dot Product 282
15.4.1.1.7 Example: Finding out if a point is above or be-

low a plane . 283

6

Contents

15.4.2 The Matrix™ . 284
15.4.2.1 Matrix Multiplication as a dot product 285

15.4.2.1.1 Identity . 285
15.4.2.1.2 Scale . 285
15.4.2.1.3 Skew matrices . 287
15.4.2.1.4 Rotation matrices 287
15.4.2.1.5 3D Rotation Matrices 288

15.4.2.2 Matrix Algebra . 290
15.4.2.2.1 Commmumamitativiwha? 290
15.4.2.2.2 What else is weird? 290

15.4.3 “The Full Stack” . 291
15.4.3.1 Translation matrices . 291

15.4.3.1.1 Homogenous coordinates: Hacking 3d in 4d . . 291
15.4.3.2 SRT (Scale-Rotate-Translate) operations 292
15.4.3.3 Using Matrices and Quaternions in openFrameworks . . 293

16 Memory in C++ 297
16.1 Computer memory and variables . 297
16.2 Stack variables, variables in functions vs variables in objects 299
16.3 Pointers and references . 301
16.4 Variables in the heap . 309
16.5 Memory structures, arrays and vectors . 311
16.6 Other memory structures, lists and maps 315
16.7 smart pointers . 316

16.7.1 unique_ptr . 318
16.7.2 shared_ptr . 320

17 Threads 321
17.1 What’s a thread and when to use it . 321
17.2 ofThread . 322
17.3 Threads and openGL . 326
17.4 ofMutex . 328
17.5 External threads and double buffering . 330
17.6 ofScopedLock . 334
17.7 Poco::Condition . 335
17.8 Conclusion . 338

18 ofxiOS 339
18.1 OpenFrameworks on iOS devices. 339
18.2 Intro . 339
18.3 Intro to Objective-C . 339

18.3.1 Obj-C Class structure . 341
18.3.2 Make new Obj-C Class in XCode . 342
18.3.3 Variables and Methods . 342

7

Contents

18.3.4 Memory Management . 344
18.3.5 Ins and Outs . 345
18.3.6 Properties . 346
18.3.7 Delegates . 348
18.3.8 Automatic Reference Counting (ARC) 348
18.3.9 Mixing Obj-C and C++ (Objective-C++) 350
18.3.10 TODO . 350

18.4 Under the Hood . 350
18.4.1 ofxiOSApp . 351
18.4.2 OpenGL ES and iOS . 353

18.5 OF & UIKit . 353
18.6 Media Playback and Capture . 354

18.6.1 ofxiOSVideoPlayer . 354
18.6.2 ofxiOSVideoGrabber . 357
18.6.3 ofxiOSSoundPlayer and ofxOpenALSoundPlayer 357
18.6.4 ofxiOSSoundStream . 357

18.7 Life Hacks . 357
18.8 App Store . 357
18.9 Case Studies . 358
18.10 Blah blah . 358
18.11 auto . 359

18.11.0.1 How this helps . 359
18.11.1 Watch out for this . 360

18.11.1.1 auto is not a new type . 360
18.11.1.2 You can’t use auto in function arguments 360
18.11.1.3 You can’t use auto as a function return type 361

18.11.2 const and references . 361
18.11.3 Summary . 362

18.12 for (thing : things) . 362
18.12.1 Summary . 363

18.13 override . 363
18.13.1 Summary . 364

18.14 Lambda functions . 364
18.14.1 Worker threads . 364
18.14.2 Callbacks . 364
18.14.3 Summary . 364

19 Case Study : Line Segments Space 365
19.1 Foreward . 365
19.2 Artist statement . 366
19.3 Digital Emulsion . 366

19.3.1 Structured Light . 367

8

Contents

19.4 Technical solution . 368
19.4.1 Constraints . 368
19.4.2 System overview . 368

19.4.2.1 Software frameworks . 368
19.4.2.2 Hardware . 369

19.5 Design time applications . 369
19.5.1 addLinesToRoom . 370

19.5.1.1 Laying down lines . 370
19.5.1.2 Shadows . 370
19.5.1.3 Shift to zoom . 372
19.5.1.4 Layers feature . 372
19.5.1.5 Final notes . 372

20 Case Study: Choreographies for Humans and Stars 373
20.1 Project Overview . 373

20.1.1 Call, Competition and Commission 374
20.1.2 Timeline . 375
20.1.3 Everyone involved . 375

20.2 Ideation and Prototyping . 376
20.2.1 Challenges in the Interaction design 376
20.2.2 Outlining the dance zone . 377
20.2.3 Producing video content . 378

20.3 Finding the Technical Solutions . 378
20.3.0.1 Put the Projector with the animals 378
20.3.0.2 Camera style and placement 379
20.3.0.3 Network setup and negotiations 380

20.3.1 Choice of tracking software . 380
20.3.1.1 Method of Tracking . 381
20.3.1.2 Tracking challenges . 381

20.3.2 Choice of visualization software . 382
20.3.3 Additional software used . 383

20.4 Developing the Visualization Software . 384
20.4.1 Development setup . 384
20.4.2 Quick summary of what the app does 384
20.4.3 Sequential structure . 384
20.4.4 Incoming tracking data . 385

20.4.4.1 Dealing with split message blocks and framerate differ-
ences . 385

20.4.4.2 Storing and updating tracking data 386
20.4.4.3 Perspective transformation 386

20.4.5 Implementing video content . 387
20.4.5.1 The quest for the right codec 387
20.4.5.2 Dynamic video elements 388

9

Contents

20.4.5.3 Preloading versus dynamic loading 388
20.4.6 Event-driven animation . 389
20.4.7 Debug screen and finetuning interaction 390

20.5 Fail-safes and dirty fixes . 391
20.5.1 First: Keep your App alive . 391
20.5.2 Second: Framerate cheats . 392
20.5.3 Always: Investigate . 392
20.5.4 Finally: Optimize . 392

20.6 Results and Reception . 393

21 Case Study: Anthropocene, an interactive film installation for Greenpeace as
part of their field at Glastonbury 2013 395
21.1 Project Overview . 395
21.2 The Project . 395

21.2.1 Initial Brief from Client . 395
21.2.2 Our response . 396
21.2.3 Audio negotiations . 399
21.2.4 Supplier change, Final Budget Negotiations and Interaction Plan 399
21.2.5 Interactive Background to Delay Maps, and the possibility of gen-

erating a Delay Map from the Kinect Depth Image 401
21.2.6 Actual Timeline . 403

21.3 Development . 404
21.3.1 Development Hardware and Software setup 404
21.3.2 Explanation and Discussion of Development in Detail 404

21.3.2.1 ofxKinect, as a possible input to ofxSlitScan 404
21.3.2.2 ofxSlitScan, using PNG’s and moving to generating real-

time delay maps, making a Aurora 405
21.3.2.3 ofxBox2d, making ice, previous projects with Todd Van-

derlin . 405
21.3.2.4 ofxTimeline, understanding how cuing works 406
21.3.2.5 ofxGui, running the Latest branch from Github, multiple

input methods and GUI addons 406
21.3.2.6 ofxOpticalFlowFarneback, making a polar bear 406

21.3.3 XML Issues around the Naming of Scenes 407
21.3.4 Video Performance, using the HighPerformanceExample 407
21.3.5 Counting the items in an Enum . 407
21.3.6 Sequencing . 409

21.4 Show time . 409
21.5 Post Event . 409

21.5.1 Testimony from Show Operators . 411
21.5.2 Open Source discussions with Client 412
21.5.3 Re-running remotely in Australia and New Zealand 412

10

Contents

21.5.4 Future development . 412
21.5.4.1 Social interaction . 413
21.5.4.2 Broadcast . 413
21.5.4.3 Raspberry Pi . 413

21.5.5 Conclusion . 414
21.6 Team and Credits . 414
21.7 Hardware selection . 415
21.8 Appendix 1: Code structure, main loop . 415
21.9 Appendix 2: Modes, with screen grabs and code explanation 418

21.9.0.1 BLANK . 418
21.9.0.2 GUI . 418
21.9.0.3 VIDEO . 422
21.9.0.4 VIDEOCIRCLES . 423
21.9.0.5 KINECTPOINTCLOUD . 425
21.9.0.6 SLITSCANBASIC . 426
21.9.0.7 SLITSCANKINECTDEPTHGREY 427
21.9.0.8 SPARKLE . 428
21.9.0.9 VERTICALMIRROR . 430
21.9.0.10 HORIZONTALMIRROR . 431
21.9.0.11 KALEIDOSCOPE . 433
21.9.0.12 COLOURFUR . 436
21.9.0.13 DEPTH . 437
21.9.0.14 SHATTER . 438
21.9.0.15 SELFSLITSCAN . 440
21.9.0.16 SPIKYBLOBSLITSCAN . 441
21.9.0.17 MIRRORKALEIDOSCOPE . 442
21.9.0.18 PARTICLES . 445
21.9.0.19 WHITEFUR . 447
21.9.0.20 PAINT . 448

21.10 Appendix 3: Edited development notes . 449
21.10.0.21 29th May 2013 . 449
21.10.0.22 30th May 2013 . 453
21.10.0.23 31st May 2013 . 454
21.10.0.24 6th June 2013 . 454
21.10.0.25 12th June 2013 . 456
21.10.0.26 13th June 2013 . 456
21.10.0.27 16th June 2013 . 458
21.10.0.28 17th June 2013 . 460
21.10.0.29 18th June 2013 . 461
21.10.0.30 20th June 2013 . 463
21.10.0.31 21st June 2013 . 463
21.10.0.32 23rd June 2013 . 467
21.10.0.33 24th June 2013 . 469

11

Contents

21.10.0.34 25th June 2013 . 471
21.10.0.35 26th June 2013 . 472

22 Version control with Git 473
22.1 What is version control, and why should you use it? 473
22.2 Different version control systems . 474
22.3 Introduction to Git . 475

22.3.1 Basic concepts . 475
22.3.2 Getting started: project setup . 476

22.3.2.1 .gitignore . 478
22.3.2.2 git status . 479
22.3.2.3 git add . 480
22.3.2.4 git commit . 481

22.3.3 First edits . 482
22.3.3.1 git diff . 483

22.3.4 Branches and merging . 485
22.3.4.1 git branch and git checkout 485
22.3.4.2 Merging branches . 486
22.3.4.3 git log . 487
22.3.4.4 git merge . 488
22.3.4.5 git reset . 489
22.3.4.6 Merge conflicts . 489
22.3.4.7 git tag . 492

22.3.5 Remote repositories and Github . 492
22.3.5.1 Setting up and remotes . 492
22.3.5.2 Fetching and pulling . 493
22.3.5.3 Pushing . 494
22.3.5.4 Pull requests . 494

22.4 Popular GUI clients . 495
22.5 Conclusion . 495

22.5.1 Tips & tricks . 495
22.5.2 Further reading . 496

23 ofSketch 499
23.1 What is ofSketch? . 499

23.1.1 What is ofSketch Good For? . 500
23.1.2 What is ofSketch NOT Good For? . 500
23.1.3 How does ofSketch work? . 500

23.2 Download . 501
23.2.1 Getting Started With ofSketch . 501
23.2.2 ofSketch Style Code . 501
23.2.3 Project File . 501
23.2.4 Classes . 502
23.2.5 Includes . 504

12

Contents

23.2.6 Examples . 504
23.3 Sketch Format . 505
23.4 Remote Coding . 506
23.5 Future . 507

23.5.1 App Export . 507
23.5.2 Project File Export . 507
23.5.3 Custom .h & .cpp Files . 507
23.5.4 Clang Indexed Autocomplete . 507

24 Installation up 4evr - OSX 509
24.1 Step 1: Prep your software and the computer 509
24.2 Step 2: Boot into your software . 513
24.3 Step 3: Keep it up (champ!) . 513
24.4 Step 4: Reboot periodically . 519
24.5 Step 5: Check in on it from afar . 520
24.6 Step 6: Test, test, test. 522
24.7 Additional Tips: Logging . 522
24.8 Memory leak murderer . 525
24.9 Alternate resources . 525

25 Installation up 4evr - Linux 527
25.1 Some additional tricks: . 528

13

1 Foreword

by Zach Lieberman¹

Openframeworks began around 2004 / 2005. I was teaching at Parsons School of De-
sign, and at the same time, making a living as an artist creating interactive projects
with code.

I had graduated a few years earlier from grad school in 2002, and we were using com-
putational tools like Director / Lingo and Flash when I was there – it was the heyday
of flash experimentation. In 2002, my professor, Golan Levin, invited me to collaborate
with him on some projects after I graduated from school and he introduced me to ACU,
a C++ library that had been developed at MIT under the Aesthetics and Computation
Group, the group that John Maeda ran which had students like Elise Co, Peter Cho, Ben
Fry, Casey Reas and Golan himself.

ACU as a library was great, but quite oriented to late 90s tech such as SGI machines.
It was also not open source and not actively maintained. Folks like Ben Fry had fortu-
itously moved on to developing Processing and it seemed like it wasn’t going to last
us a long time for our work. It seemed like we would need an alternative codebase
moving forward.

In addition, I really wanted to share the code I was writing in my professional practice
with my students. I remember vividly having conversations with the administration of
the department at Parsons where they said, “Art students don’t want to learn C++.” I
started teaching classes with OF in 2005, and I had students like Theo Watson, Christine
Sugrue, and Evan Roth who created remarkably wild, experimental work with OF and
that argument crumbled rapidly. C++ provided low level access to the machine for
things like computer vision, sound processing, access to hardware as well as access to
a wide array of librarys that other folks had written. It opened up doors to expressive
uses of computation.

Theo Watson, who was my student in 2005, joined the OF team to help produce an
OSX version. I’m not totally sure when our first official release was, but I remember
vividly presenting openframeworks to the public in a sort of beta state at the 2006
OFFF festival where we had an advanced processing workshop held at Hangar. One of
the participants of that workshop, Arturo Castro, joined the OF team to help produce a
linux version. Theo, Arturo and I have been joined by a huge group of people who use
OF and help contribute to it.

¹http://thesystemis.com

15

http://thesystemis.com

1 Foreword

In 2008, we won a prize at Ars Electronica and built a laboratory called OF lab which
brought many of us who had been working remotely, face-to-face, often for the first
time. It was the first of many such world-wide meetings, labs, workshops, and devel-
oper conferences that have helped grow the community. That year we also held an
OF workshop in Japan at YCAM and discovered that there was a whole community of
people across the world using this tool. It was way more global then we had thought.
It was simultaneously heartening and also a little bit frightening, the realization that
there were people around the world who were using this tool to make a living.

We’ve been lucky in these events to be able to work with great institutions such as The
Studio for Creative Inquiry, V&A museum, YCAM, Imal, Ars Electronica and Eyebeam,
which have helped sponsor events to bring the OF community together.

In recent years, we’ve tried to help grow and expand the community – folks like Kyle
McDonald have helped organize the diverse interests of developers and keep every-
thing focused while Caitlin Morris has produced detailed surveys of the community.
Greg Borenstein and James George helped launch ofxAddons.com, an online reposi-
tory which helps organize the impressive quantity of addons that the community is
creating on a daily basis. In addition, there are now section leaders for the develop-
ment of OF, helping grow different parts of the codebase and helping imagine what
modern OF looks like. Finally, there are countless contributors to OF who help with the
codebase, documentation, examples, addons and answering questions on the forum.

More than anything, we’ve tried as hard as we can to create a friendly atmosphere
around programming, which can be an unfriendly activity and in some ways isolating.
We preach the idea of art-making as a laboratory, as R&D for humanity, and OF is
one attempt to make a large lab where we can grow and share experiments together.
Somehow, luckily, we’ve attracted some of the most amazing, helpful, warm-hearted,
lovely people to come be a part of this, and if you’re not already, we’d like to say
welcome.

1.1 about this book

This book, much in the spirit of openframeworks, is a community driven affair and it’s
very much a work in progress. It was a suggestion on the openframeworks developers
mailing list which kicked this off and for a the past months we’ve been hacking away
on it.

A couple of notes,

• Feedback is very much appreciated and we’d like to know what’s missing, or
what you’d like to have in here. Likewise, if you find something helpful, we’d
love to hear it, too! Our github repo is active and we take issues and pull requests.

16

1.2 credits

• Please note that there are likely gaps here. We’ve tried to roughly lay out chapters
in order of skill level, but since it’s a collectively written book, it can feel a bit
disorienting, with some chapters being on the long side, while some are short.
Think of it not as a book you read front to back, but more like a collection of
short tutorials from the community.

Every chapter, unless noted, is licensed: Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License²

1.2 credits

Countless thanks to Rachel Uwa for organizing this project, Tega Brain for helping edit
it, Ishac Bertran and Andy Clymer for directing the design, and Arturo Castro, Christoph
Buchner and Michael Hadley for developing the codebase for generating the book.
MORE MORE MORE MORE

Editors: MORE MORE MORE MORE

Chapter Authors: MORE MORE MORE MORE

²http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

17

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

2 philosophy

by Zach Lieberman¹
openFrameworks is guided by a number of goals: it should be collaborative, usable
and simple, consistent and intuitive, cross-platform, powerful, and extensible. open-
Frameworks is also driven by a “do it with others” (DIWO) philosophy.

2.0.1 Collaborative

openFrameworks development is collaborative. It thrives on the contributions of many
people who engage in frequent discussion, and collaborate on addons and projects.
We encourage people to make openFrameworks their own and contribute to the ecosys-
tem.
openFrameworks is developed in a collaborative way. We use git, a distributed version-
ing system, which means that people can branch, experiment, and make suggestions.
If you look at the network diagram on GitHub, it looks like some alien diagram, full of
weaving branches, code pulling apart and coming together. There’s a huge community
all over the world working on the core code: fixing bugs, submitting pull requests, and
shaping the tool the way they want to see it. It’s a world wide project and it’s com-
mon to wake up in the USA to an inbox full of pull requests and issues emails from
coders in Asia and Europe. Over 70 people have contributed to the openFrameworks
core directly, and hundreds of people have forked the code or contributed in other
ways.

2.0.2 Simplicity

openFrameworks tries to balance usability and simplicity. The earliest versions of
openFrameworks used the core as a tool for teaching C++ and OpenGL, but over time
the examples have become the best way to learn while the core takes advantage of
more advanced features. In exchange, we’ve created many more examples that come
with openFrameworks, with the goal of trying to make simple, hackable starting points
for experimentation.
We want openFrameworks to be as simple as possible, especially for folks coming from
other languages and environments. C++ is a “large” language, large in the sense that
¹http://thesystemis.com

19

http://thesystemis.com

2 philosophy

you can write very different types of C++ code. If you go to the bookstore, you’ll see
hundreds of C++ books. We want to create a library where you don’t need to be an
expert, where at most you might need a book or two, but that the patterns, approaches
and style of the code is simple and intuitive. We were especially interested in achieving
a sort of parity with Processing, wheremany of the functions are similar, allowing easier
movement from one framework to another.

2.0.3 Consistent and Intuitive

openFrameworks is consistent and intuitive: it should operate on the principle of least
surprise, so that what you learn about one part of openFrameworks it can be applied
to other parts of it. Beginners can use openFrameworks to learn about common pro-
gramming patterns, and advanced users will be able to apply their experience from
other languages and toolkits.

Student first is the motto. A lot of the thinking guiding openFrameworks is: what would
I would have liked in a tool 5 or 10 years ago? We want the patterns of coding to be
simple and to make it as easy as possible to type. This means having self-explanatory
function names like “play” and “stop” for video players, and variable names that are
intuitive. We have lots of discussions about intuition, driven by a desire to make the
code as straightforward as possible. You should learn by typing, autocomplete should
be helpful, etc.

2.0.4 Cross-platform

openFrameworks is a cross-platform toolkit. openFrameworks supports as many devel-
opment environments and operating systems as possible. When you download open-
Frameworks, you can pick your platform and development environment of choice, and
have projects and examples ready to learn from and play with. Difficult to port code is
kept out of the core, and kept in addons instead.

openFrameworks is designed to work on amultitude of platforms: OS X, Windows, Linux,
iOS, Android, embedded ARM Linux systems, as well as experimental platforms such as
BlackBerry PlayBook. openFrameworks developers have devised some clever ways of
interfacing with other languages, such such as Java in the case of Android, or Objective-
C in the case of iOS.

The joy of a cross-platform library is that it’s easy to port your ideas from platform
to platform. You can sketch on your laptop then immediately run it on your phone.
It allows your ideas to come first, without worrying about the grunt work in making
something work across platforms.

20

2.0.5 Powerful

openFrameworks is powerful: it allows you to leverage advanced libraries like OpenCV,
use hardware like your graphics card efficiently, and connect peripherals like cameras
and other devices.

We chose C++ because it’s a fairly low level language but can still be programmed in
a high level way. Because C++ is an extension of the older C programming language,
it’s possible to write very low level, oldschool C code or higher level C++ code. In
openFrameworks, we try to harness both approaches and present simple, clear, yet
powerful ways of working with code. Using C++ also makes it easier to interface to
the many libraries that have been written in C and C++ without needing to rely on a
wrapper for another language.

openFrameworks essentially wraps other libraries such as OpenGL, Cairo, FreeType,
FreeImage, and OpenCV. You can think of openFrameworks as a layer of code between
user code (the code you will write) and these libraries. The libraries have different
styles, idioms, approaches, etc. and our job is to wrap them in a way which makes
them more consistent and intuitive.

2.0.6 Extensible

openFrameworks is extensible. When you find something missing from openFrame-
works it’s easy to create addons that extend it. The core addons for openFrameworks
generally wrap libraries rather than solving problems in novel ways. When openFrame-
works wraps libraries, the libraries are left exposed for further hacking.

One mental image of openFrameworks is a scaffolding, or shoulders to stand on, while
building what you want. One thing that helps keep the core light is that rather than
try to include everything we can, openFrameworks has an “addon” system that allows
for additional code, libraries, and approaches to be shared between users and woven
into projects as necessary.

An openFrameworks addon can be a snippet of code, or it might wrap much more
complex libraries such as OpenNI, Tesseract, or Box2d. Addon names usually begin
with the prefix “ofx”, allowing you to easily see the difference between “core” code and
non core code. In addition, we include “core addons”, addons that we think people will
probably want to use, such as ofxOpenCv, but aren’t essential for every project.

We try to organize and support the community developing addons through the
http://ofxaddons.com site, which automatically collects addons from GitHub by
looking for repos that contain the term “ofx” in the title. Right now there are more
than 1,500 addons.

21

2 philosophy

2.0.7 Do it with others (DIWO)

<<<<<<< HEAD The driving philosophy behind openFrameworks is “do it with others”
(DIWO). We love do it yourself (DIY) culture, which has been heavily promoted and
facilitated by the rise of tutorial websites like Instructables or Make. But we’re also
excited about the idea of “making socially” (“with others”). We practice DIWO through
workshops, developer conferences, hackathons/labs, knitting circles and meetups in
person, and online in the form of mailing lists, forum posts, and so on. We even have
a gang sign. Because if you have a gang, you have to have a gang sign. The most
important thing we want to stress is that you are not alone, that there’s a great group
of people out there learning, teaching, hacking, making and exploring the creative side
of code.

2.1 OF structure

The most important thing to understand about OF is that it has been designed to be
a self contained structure. You download OF from the website and that version of OF
can go anywhere on your hard drive. You shouldn’t mix different versions of OF and
while older projects might work in newer versions of OF, that’s not always a guarantee,
especially if there’s been a major release.

Because OF can go anywhere on your hard drive, all the internal links are relative.
A project file, for example, looks to ../../../libs rather then a fixed path like
C:Documents and Settings\OF (on windows) or /Users/name/Desktop/OF (on
linux / osx). This means that you have to be extremely careful about the depth that
a project is away from the root of the OF folder. This is one of the most common
mistakes beginners make, they have a project that they either move too shallow or
too deeply, or they find and use other people’s code but don’t put it in the right spot.
I simply can’t stress this point enough: project files have relative paths. It’s sweet,
because it means you can share projects easily (it doesn’t have a fixed path with your
name on it, for example) and you can move the whole OF folder around, but it still
trips many beginners up.

[NOTE: I think below here belongs in Roy’s chapter…. this chapter is more historical
and conceptual, these are more practical]

2.2 project generator

OF now ships with a simple project generator which is really useful for creating new
projects. One of the larger challenges has always been making a new project and this
tool takes a template andmodifies it, chaning the name to a new name that you choose

22

2.3 .h and .cpp

and even allowing you to add addons, additional libraries that come with OF or that
you can download. It allows you to pick where you want the project to go, and while
we’ve structured all the examples to be a certain distance away from the root, you can
change the height using this tool. It’s designed to make it easy to start sketching in
code without worrying too much about making a new project. In the past we’ve always
recommend that you copy an old project and rename it, but this is a more civilized
approach to making projects.

2.3 .h and .cpp

In OF (which is C++) you’ll see .cpp and .h files (they are sometimes labeled as cxx or
hpp files, respectively). The h files are the header files and cpp files are the implemen-
tation files. Header files are definitions – they show what’s going to be in the code
and implementation files are the actual steps. One anology is like a book, the header
file is like the the table of contents of the book and describes the layout of the book
and the implementation files are like the chapters, where the book is written. Another
analogy is a recipe, where you have the list of ingedients (header files) and the actual
steps (implementation files). It’s useful to know about this split as a lot of modern
languages don’t have this split.

MORE

2.4 setup/update/draw

OF runs in a kind of game loop model - where we get you a context to draw into and try
to run as fast as we can and repetedly draw. There are 3 main functions that you’ll see
a majority of the code in (as well as the event functions like mousePressed, keyPressed,
etc)

• setup()
• update()
• draw()

Setup gets called once, at the first moment we have a window context and it’s a good
place for initializing variables and loading in files. Update and draw get called repeat-
edly. Update is for doing non visual changes, such as altering variables or performing
analysis, draw is where we do any drawing. The order they get called in is:

setup->update->draw->update->draw->…..

Folks coming from processing, where there is just setup() and draw() often times won-
der why we have two functions that repeat instead of one. There’s a couple of reasons:

23

2 philosophy

• Drawing in opengl is asynchronous, meaing after you fire off a bunch of com-
mands to draw, they can be running in the background and return control back
to your app. If you seperate out your drawing code from your non drawing code
there’s a potential your code will be faster.

• it’s useful for debugging. If you want to know why your code is running slow, now
you can comment out the drawing and see if the visual representation that’s slow
or the updating.

2.5 preprocessor/compiler/linker

When you write code, your end goal is a compiled application - an .exe or .app that
you can click on an run. The job of the compiler is to make that executable for you,
to turn text into compiled binary files. It’s a 3 step process, and it’s useful to know
what’s happening, especially since you can have errors at different steps along the
way. Most IDEs output out a very length file of the compiling, and this can be really
useful if you are posting to the forums, for example. Once you understand the process
of how projects come to be, it can be easier to isolate errors. Nothing is as frustrating
or daunting as looking at 500+ errors in a project when you go to compile, but when
you notice that there’s a missing include, it’s clear why and usually one thing will fix
many of the problems.

2.5.1 preprocess

The first step is that a preprocessor modifies the text files themselves. When you
see the # symbol, that’s a preprocessor operation. The most common preprocessor
statement you’ll see is:

#include "xxxxx.h"

which actually means, take the content of this file and put it right here. [NOTE: more
on “” vs <>] You’ll also see things like:

#define PI 3.1428

This means, when you see the word PI in the code, change it to this variable. This isn’t
a variable, this is literally modifying text.

Another common preprocessor step is asking a question. you can say things like:� �
#ifdef windows

#include "windows.h"
#else

#include "nonWindows.h"
#endif� �
24

2.5 preprocessor/compiler/linker

As you can imagine this is increadibly useful for cross platform compilcation. If you
want to see preprocessor craziness, look at ofConstants.h.

One common error you’ll have in the preprocess phase is a file not found error, if you
include a file like� �
#include "opencv.h"� �
and it can’t find the file, you will get an error at the preprocessing stage. The way to fix
this is to add header search paths, basically the places (folders) the IDE goes to look
for a file. This is a common error when using a new library and one of the things the
project generator is deisgned to help with when adding an addon.

[more on ofMain.h]

2.5.2 compile

Once the text has been modified, the job of the compiler is simply to take .cpp files and
turn them into object code. It’s taking the text and turning it into machine language
instructions (also referred to as assembly). It doesn’t touch the h files at all, it only
thinks about .cpp files. In the previous phase the .cpp file has all the h files it uses
added to it recursively.

This recursive h inclusion is one reason while you will see include guards on the top
of h files. They will either look like:� �
#ifndef SOMEWORD
#define SOMEWORD
...
#endif� �
or the more modern� �
#pragma once� �
This is because if a file is included twice into a .cpp file the compiler could be confused.
If it’s sees the same definition twice, like:� �
float position;
float position;� �
it will not know which one is which. The include guard prevents the file from being
included twice.

there are plenty of errors that can happen at compile time – using a variable that you
haven’t defined for example. The compiler will stop when it hits an error and the IDEs
are designed to make it easy for you to see where the errors are and fix them.

25

2 philosophy

The compilers job in life is to take the .cpp files and turn them into .o files. These are
individual object files that it will compbine in the next phase, linking.

2.5.3 link

Finally, after we have a bunch of object files, our job is to link them into one thing –
in our case an application (alternatively, compilers can compile code into a library, for
example). This is what the linker does. As you can imagine, there are jumps from one
thing to another. For example, in ofApp you could call a graphics call from ofGraphics:� �
void ofApp::draw(){

ofCircle(100,100,20);
}� �
This code is calling a function in another object. The linker figures out the links from ob-
ject to object (in this case between ofApp.o and ofGraphics.o) and links them together
into one file.

In addition to header search paths, there are also setting in the IDE for dealing with
linker paths and libraries to link against. A common error you might see is a link error,
where the code in your project compiles fine, but it’s having trouble linking because
some object is missing. For example, if you forget to include a .cpp file from the source
code, the other code will comiple fine, but when the linker goes to make that jump,
it can’t find where to jump to. Linker errors are described as “undefined reference”
errors and occur at the end of the compile process.

======= The driving philosophy behind openFrameworks is “do it with others” (DIWO).
We love do it yourself (DIY) culture, which has been heavily promoted and facilitated
by the rise of tutorial website like Instructables or Make. But we’re also excited about
the idea of “making socially” (“with others”). We practice DIWO through workshops,
developer conferences, hackathons/labs, knitting circles and meetups in person, and
online in the form of mailing lists, forum posts, and so on. We even have a gang sign.
Because if you have a gang, you have to have a gang sign. The most important thing we
want to stress is that you are not alone, that there’s a great group of people out there
learning, teaching, hacking, making and exploring the creative side of code. >>>>>>>
upstream/master

26

3 C++ Language Basics

by Josh Nimoy¹

The magician of the future will use mathematical formulas.

–Aleister Crowley, 1911

3.1 Look Alive!

This chapter introduces you to writing small computer programs using the C++ language.
Although I assume very little about your previous knowledge, the literacy you gain from
this chapter will directly influence your comprehension in subsequent chapters of the
book, asmost other topics stand on the shoulders of this one. Furthermore, the lessons
herein are cumulative, meaning you can’t skip one of the topics or you will get lost. If
you get stuck on one of the concepts, please seek help in understanding specifically the
part that did not make sense before moving on to the next topic. Following the lessons
with this sort of rigor will insure that you will get the most out of OpenFrameworks, but
also computers in general.

3.2 Iteration

I did most of my drawing and painting in the mid-nineties, a high school AP art stu-
dent sporting a long black ponytail of hair shaved with a step, round eyeglasses, and
never an article of clothing without spill, fling, smattering, or splotch of Liquitex Basics
acrylic paint. Bored out of my mind in economics class, playing with my TI-82 graph-
ing calculator, I discovered something that flipped a light bulb on in my heart. Unlike
smaller calculators around my house growing up, the TI-82 had a thick instruction man-
ual. Amidst sections in this manual about trig functions and other dry out-of-reach
science, something caught my thirsty, young eye: a sexy black-on-white pyramid with
smaller upside-down pyramids infinitely nested inside, shown in Figure 1.

This fractal, the famous Sierpinski triangle², accompanied about twenty-five computer
instructions making up the full SIERPINS program. I looked closer at the code, seeing

¹http://jtnimoy.net
²https://www.wolframalpha.com/input/?i=sierpinski+triangle

27

http://jtnimoy.net
https://www.wolframalpha.com/input/?i=sierpinski+triangle

3 C++ Language Basics

Figure 3.1: Figure 1: TI-82 rendering of the Sierpinski triangle, Courtesy of Texas
Instruments

a few numeric operations – nothing too advanced, and most of it was commanding
words, like “do this”, or “ if something then do another thing”. I was able to key in the
code from the book into the graphing calculator and run the program. At first, just a
blank LCD panel. Slowly a few random pixels switched to black here and there, not
really showing any pattern. After a few more seconds, the scene filled in and I could
already see faint outlines of triangles. After a good long time, my calculator finally
matched the picture in the book. My mind was officially blown. Certain things did not
make sense. What sort of miracle of nature caused such a complex form to come from
so little instruction? The screen had over six thousand pixels in it, so why is it that
a mere twenty-five instructions was all it took to create this amazing, organism-like
artwork? Whose artwork was it? Might I derive a new work from it? Rarely had I ever
seen such a magical reward coming from so little work. I had found my new basics. I
felt the need to understand the program because (I decided) it was important. I went
back into the code and changed some of the numbers, then ran the program again.
The screen went blank, then drew a different picture, only this time, skewed to the left,
falling out of the viewport. Feeling more courageous, I attempted to change one of the
English instructions, and the machine showed an error, failing to run.

The cycle illustrated in Figure 2 is an infinitely repeating loop that I have had a great
pleasure of executing for a couple decades and I still love what I do. Each new cycle
never fails to surprise me. As I pursue what it means to create a program, and what
it means to create software art, the process of iteratively evolving a list of computer
instructions always presents as much logical challenge as it does artistic reward. Very
few of those challenges have been impossible to solve, especially with other people
available to collaborate and assist, or by splitting my puzzle into smaller puzzles. If

28

3.2 Iteration

Figure 3.2: Figure 2: The human loop of a programmer.

you have already written code in another environment like Processing, Javascript, or
even HTML with CSS, then this first important lesson might seem too obvious.

For those just now familiarizing themselves with what it means to write small programs,
it is important to understand the iterative nature of the code writing process. The anec-
dote in Figure 3 shows what this process is not. Rarely would you ever enter some code
into the editor just once, and expect to hit compile and see your finished outcome. It is
natural, and commonly accepted for programs to start small, have plenty of mistakes
(bugs), and evolve slowly toward a goal of desired outcome or behavior. In fact it is
so commonplace that to make the former assumption is a downright programmer’s
mistake. Even in older days when programs were hand-written on paper, the author
still needed to eyeball the code obsessively in order to work out the mistakes; there-
fore the process was iterative. In learning the C++ language, I will provide tiny code
examples that you will be compiling on your machine. The abnormal part is typing
the code from the book into the editor, and (provided your fingers do not slip) the
program magically runs. I am deliberately removing the troubleshooting experience in
order to isolate the subject matter of the C++ language itself. Later on, we will tackle
the commonplace task of debugging (fixing errors) as a topic all its own.

29

3 C++ Language Basics

Figure 3.3: Figure 3: Don’t get the wrong idea.

3.3 Compiling My First App

Let us start by making the smallest, most immediate C++ program possible, then use
the convenient environment to test small snippets of C++ code throughout this chapter.
In order to do that, we must have a compiler, which is a program that translates some
code into an actual runnable app, sometimes referred to as the executable file. C++
compilers are mostly free of charge to download, and in a lot of cases, open source.
The apps we generate will not automatically show up in places like Apple’s App store,
Google Play, Steam, Ubuntu Apps Directory, or Pi Store. Instead, they are your personal,
private program files and you will be responsible for manually sharing them later on.
In the following chapter OF Setup and Project Structure, the compiler will sit on your
local computer, able to run offline. For now, we will be impatient and compile some
casual C++ on the web using a convenient tool by Sphere Research Labs. Please open
your web browser and go to ideone³ (http://ideone.com).

You will notice right away that there is an editor already containing some code, but it
may be set to another language. Let’s switch the language to C++11 if it is not already
in that mode. Down at the bottom left of the editor, press the button just to the left of
“stdin”, as shown in Figure 4. The label for this button could be any number of things.

A menu drops down with a list of programming languages. Please choose C++11, shown

³http://ideone.com

30

http://ideone.com

3.3 Compiling My First App

Figure 3.4: Figure 4

in Figure 5.

Figure 3.5: Figure 5

Notice that the code in the editor changed, and looks something like figure 6.

Figure 3.6: Figure 6

This is just an empty code template that does nothing, and creates no errors. The
numbers in the left hand gutter indicate the line number of the code. Press the green
button labeled Run. You will see a copy of the code, “Success” in the comments, and
the section labeled stdin (standard input) will be empty. stdout (standard output) will
also be empty.

31

3 C++ Language Basics

3.3.1 Interlude on Typography

Most fonts on the web are variable width, meaning the letters are different widths;
the eye finds that comfortable to read. Fonts can also be fixed-width, meaning all
the letters (even the W and the lowercase i) are the same width. Although this may
look funny and quant like a typewriter, it serves an important purpose. A fixed width
font makes a block of text into a kind of game board, like chess squares or graphing
paper. Computer programming code is generally presented in fixed-width typesetting,
because it is a form of ascii-art. The indentation, white space characters, and repetitive
patterns are all important to preserve and easily eyeball for comparison. Every coder
I know except artist Jeremy Rotsztain uses some manner of monospaced font for their
code. Some typeface suggestions are Courier, Andale Mono, Monaco, Profont, Monofur,
Proggy, Droid Sans Mono, Deja Vu Sans Mono, Consolas, and Inconsolata. From now on,
you will see the font style switch to this inline style . . .� �
and this style encased in a block . . .� �
. . . and that just means you are looking at some code.

3.3.2 Comments

Now please press Edit (Figure 7) at the top left of the code editor.

Figure 3.7: Figure 7

You will see a slightly different editing configuration but the same template code will
still be editable at the top. We will now edit the code. Find line 5, where it says:� �
// your code goes here .� �
A line beginning with a double forward slash is called a comment. You may type any-
thing you need to in order to annotate your code in a way you understand. Sometimes

32

3.3 Compiling My First App

a it’s useful to “comment out code” by placing two forward-slashes before it, because
that deactivates the C++ code without deleting it. Comments in C++ can also take up
multiple lines, or insert like a tag. The syntax for beginning and ending comment-mode
is different. Everything between the /* and the */ becomes a comment:� �
/*
this is a multi-line comment.
still in comment mode.
*/� �
Please delete the code on line 5 and replace it with the following statement:� �
cout << "Hello␣World" << endl;� �
This line of code tells the computer to say “Hello World” into an implied text-space
known as standard output (aka. stdout). When writing a program, it is safe to expect
stdout to exist. The program will be able to “print” text into it. Other times, it’s just a
window pane in your coding tool, only used to troubleshoot.

You may put almost anything between those quotes. The quoted phrase is a called a
string of text. More specifically, it is a c-string literal. We will cover more on strings later
in this chapter. In the code, the chunk cout << part means “send the following stuff
to stdout in a formatted way.” The last chunk << endl means “add a carriage return
(end-of-line) character to the end of the hello world message.” Finally, at the very end
of this line of code, you see a semicolon (;).

In C++, semicolons are like a full stop or period at the end of the sentence. We must
type a semicolon after each statement, and usually this is at the end of the line of
code. If you forget to type that semicolon, the compile fails. Semicolons are useful
because they allow multiple statements to share one line, or a single statement to
occupy several lines, freeing the programmer to be flexible and expressive with one’s
whitespace. By adding a semicolon you ensure that the compiler does not get confused:
you help it out and show it where the statement ends. When first learning C or C++,
forgetting the semicolon can be an extremely common mistake, and yet it is necessary
for the code to compile. Please take extra care in making sure your code statements
end in semi-colons.

While you typed, perhaps you noticed the text became multi-colored all by itself. This
convenient feature is called syntax-coloring and can subconsciously enhance one’s
ability to read the code, troubleshoot malformed syntax, and assist in searching. Each
tool will have its own syntax coloring system so if you wish to change the colors,
please expect that it’s not the same thing as a word processor, whose coloring is some-
thing you add to the document yourself. A code editor will not let me assign the font
“TRON.TTF” with a glowing aqua color to just endl (which means end-of-line). Instead, I
can choose a special style for a whole category of syntax, and see all parts of my code
styled that way as long as it’s that type of code. In this case, both cout and endl are

33

3 C++ Language Basics

considered keywords and so the tool colors them black. If these things show up as dif-
ferent colors elsewhere, please trust that it’s the same code as before, since different
code editors provide different syntax coloring. The entire code should now look like
this:� �
#include <iostream.h>
using namespace std;

int main(){
cout << "Hello␣World" << endl;
return 0;

}� �
Now press the green ideone it! button at the bottom right corner and watch the output
console, which is the bottom half of the code editor, just above that green button. You
will see orange status messages saying things like “Waiting for compilation,” “Compi-
lation,” and “Running”. Shortly after, the program will execute in the cloud and the
standard output should show up on that web page. You should see the new message
in Figure 8.

Figure 3.8: Figure 8

You made it this far. Now give yourself a pat on the back. You just wrote your first line
of C++ code; you analyzed it, compiled it, ran it, and saw the output.

34

3.4 Beyond Hello World

3.4 Beyond Hello World

Now that we’ve gotten our feet wet, let’s go back and analyze the other parts of the
code. The first line is an include statement:� �
#include <iostream>� �
Similar to import in Java and CSS, #include is like telling the compiler to cut and paste
some other useful code from a file called iostream.h at that position in the file, so you
can depend on its code in your new code. In this case, iostream.h provides cout and
endl as tools I can use in my code, just by typing their names. In C++, a filename
ending in .h is called a header file, and it contains code you would include in an actual
C++ implementation file, whose filename would end in .cpp. There are many standard
headers built into C++ that provide various basic services – in fact too many to mention
here. If that wasn’t enough, it’s also commonplace to add an external library to your
project, including its headers. You may also define your own header files as part of the
code you write, but the syntax is slightly different:� �
#include "MyCustomInclude.h"� �
In OpenFrameworks, double quotes are used to include header files that are not part
of the system installation.

3.4.1 What’s with the # ?

It’s a whole story, but worth understanding conceptually. The include statement is not
really C++ code (notice the absence of semi-colon). It is part of a completely separate
compiler pass called preprocessor. It happens before your actual programmatic in-
structions are dealt with. They are like instructions for the code compiler, as opposed
to instructions for the computer to run after the compile. Using a pound/hash sym-
bol before these preprocessor directives, one can clearly spot them in the file, and for
good reason too. They should be seen as a different language, mixed in with the real
C++ code. There aren’t many C++ preprocessor directives — they are mostly concerned
with herding other code. Here are some you might see.
#define #elif #else #endif #error #if #ifdef #include #line #pragma #undef
Let’s do an experiment. In the code editor, please comment out the include directive
on line 1, then run the code. To comment out the line of code, insert two adjacent
forward-slashes at the beginning of the line.� �
//#include <iostream>� �
The syntax coloring will change to all green, meaning it’s now just a comment. Run the
code by pressing the big green button at the bottom right, and you’ll see something
new in the output pane.

35

3 C++ Language Basics

� �
prog.cpp: In function ‘int main()’:
prog.cpp:5:2: error: ‘’cout was not declared in this scope

cout << "Hello World" << endl;
^

prog.cpp:5:27: error: ‘’endl was not declared in this scope
cout << "Hello World" << endl;

^� �
The compiler found an error and did not run the program. Instead, in attempt to help
you fix it, the compiler is showing you where it got confused in attempt to help you
fix it. The first part, prog.cpp: tells you the file that contains the error. In this case,
ideone.com saved your code into that default file name. Next, it says In function
‘int main()’: file showing you the specific section of the code that contains the error,
in this case, between the {curly brace} of a function called main. (We will talk about
functions and curly braces later). On the next line, we see prog.cpp:5:2:. The 5
is how many lines from the top of the file, and 2 is how many characters rightward
from the beginning of the line. Next, we see error: ‘’cout was not declared in
this scope. That is a message describing what it believes it wrong in the code. In this
case, it’s fairly correct. iostream.h is gone, and therefore no cout is provided to us, and
so when we try to send “Hello World”, the compile fails. On the next couple of lines,
you see the line of code containing the fallacious cout, plus an extra little up-caret
character on the line beneath it, and that is supposed to be an arrow pointing at a
character in the code. In this case, the arrow should be sitting beneath the ‘c’ in cout.
The system is showing you visually which token is at fault. A second error is shown,
and this time, the compiler complains that there is no endl. Of course, we know that in
order to fix the error, we need to include <iostream.h> so let us do that now. Please
un-comment line 1 and re-run the code.� �
#include <iostream>� �
When using OpenFrameworks, you have choice of tools and platforms. Each one shows
you an error in a different way. Sometimes the editor will open up and highlight the
code for you, placing an error talk bubble for more info. Other times, the editor will
show nothing, but the compile output will show a raw error formatted similarly to the
one above. While sometimes useful that we receive several errors from a compile, it
can save a lot of grief if you focus on understanding and fixing the very first error
that got reported. After fixing the top error, it is likely that all subsequent errors will
elegantly disappear, having all been covered by your first fix. By commenting out that
single line of code at the top, we caused two errors.

3.4.2 Namespaces at First Glance

Moving on to line 2, we see:

36

3.4 Beyond Hello World

� �
using namespace std;� �
Let’s say you join a social website and it asks you to choose a username. My name
is Joshua Nimoy — username might be JNIMOY. I submit the page and it returns an
error, telling me that username is already taken, and I have to choose another, since
my father, Joseph Nimoy, registered before I did and he’s got JNIMOY. And so I must
use my middle initial T, and create a unique username, JTNIMOY. I just created and
resolved a namespace conflict. A namespace is a group of unique names — none
are identical. It’s possible to have identical names, as long as they are a part of two
separate namespaces. Namespaces help programmers avoid stepping on each other’s
toes by overwriting one another’s symbols or hogging the good names. Namespaces
also provide a neat and tidy organization system to help us find what we’re looking
for. In OpenFrameworks, everything starts with of . . . like ofSetBackground and
ofGraphics. This is one technique to do namespace separation because it’s less likely
that any other names created by other programmers would begin with of. The same
technique is used by OpenGL. Every name in the OpenGL API (Application Programming
Interface) begins with gl like glBlendFunc and glPopMatrix. In C++ however, it is not
necessary to have a strictly disciplined character prefix for your names, as the language
provides its own namespacing syntax. In line 2, using namespace std; is telling the
compiler that this .cpp file is going to use all the names in the std namespace. Spoiler-
alert! those two names are cout and endl. Let us now do an experiment and comment
out line 2, then run the code. What sort of error do you think the compiler will return?� �
/* using namespace std; */� �
It’s a very similar error as before, where it cannot find cout or endl, but this time, there
are suggested alternatives added to the message list.� �
prog.cpp:5:2: note: suggested alternative:
In file included from prog.cpp:1:0:
/usr/include/c++/4.8/iostream:61:18: note: ‘ std::’cout

extern ostream cout; /// Linked to standard output
^� �

The compiler says, “Hey, I searched for cout and I did find it in one of the namespaces
included in the file. Here it is. std::cout” and in this case, the compiler is correct. It
wants us to be more explicit with the way we type cout, so we express its namespace
std (standard) on the left side, connected by a double colon (::). it’s sort of like calling
myself Nimoy::Joshua. Continuing our experiment, edit line 5 so that cout and endl
have explicit namespaces added.� �
std::cout << "Hello␣World" << std::endl;� �
When you run the code, you will see it compiles just fine, and succeeds in printing “Hello
World”. Even the line that says using namespace std; is still commented out. Now

37

3 C++ Language Basics

imagine you are writing a program to randomly generate lyrics of a song. Obviously, you
would be using cout quite a bit. Having to type std:: before all your couts would get
really tedious, and one of the reasons a programming language adds these features
is to reduce typing. So although line 2 using namespace std; was not necessary,
having it in place (along with other using namespace statements) can keep one’s C++
code easy to type and read, through implied context.

Say I’m at a Scrabble party in Manhattan, and I am the only Josh. People can just call
me Josh when it’s my turn to play. However, if Josh Noble joins us after dinner however,
it gets a bit confusing and we start to call the Joshes by first and last name for clarity. In
C++, the same is also true. I would be Nimoy::Josh and he would be Noble::Josh. It’s
alright to have two different cout names, one from the stdnamespace, and another
from the improved namespace, as long as both are expressed with explicit names-
paces; std::cout and improved::cout. In fact, the compiler will complain if you
don’t.

You will see more double-colon syntax (::) when I introduce classes.

3.5 Functions

Moving on, let us take a look at line 4:� �
int main() {� �
This is the first piece of code that has a beginning and an end, such that it “wraps
around” another piece of code. But more importantly, a function represents the state-
ments enclosed within it. The closing end of this function is the closing curly brace on
line 7:� �
}� �
In C++, we enclose groups of code statements inside functions, and each function can
be seen as a little program inside the greater program, as in the simplified diagram in
figure 9.

Each of these functions has a name by which we can call it. To call a function is to
execute the code statements contained inside that function. The basic convenience
in doing this is less typing, and we will talk about the other advantages later. Like a
board game, a program has a starting position. More precisely, the program has an
entrypoint expected by the compiler to be there. That entrypoint is a function called
main. The code you write inside the main function is the first code that executes in
your program, and therefore it is responsible for calling any other functions in your
program. Who calls your main function? The operating system does! Let’s break down
the syntax of the main function in this demo. Again, for all you Processing coders, this
is old news.

38

3.5 Functions

Figure 3.9: Figure 9: Many Functions

When defining a function, the first token is the advertised return type. Functions can
optionally return a value, like an answer to a question, a solution to a problem, the
result of a task, or the product of a process. In this case, main promises to return an
int, or integer type, which is a whole number with no fraction or decimal component.
Next token is the name of our function. The system expects the word “main” in all
lower-case, but you will later define your own functions and we will get into naming.
Next is an opening and closing parenthesis. Yes, it seems kind of strange to have it
there, since there is nothing inside it. Later, we will see what goes in there — but never
leave out the pair of parentheses with functions because in a certain way, that is the
major hint to the human that it’s a function. In fact, from now on, when I refer to a
function by name, I’ll suffix it with a (), for example main().

Next, we see an opening curly bracket. Sometimes this opening curly bracket is on
the same line as the preceding closing parenthesis, and other times, you will see it
on its own new line. It depends on the personal style of the coder, project, or group
— and both are fine. For a complete reference on different indent styles, see the the
Wikipedia article on Indent Style (http://en.wikipedia.org/wiki/Indent_style).

In between this opening curly bracket and the closing one, we place our code state-
ments that actually tell the computer to go do something. In this example, I only have
one statement, and that is the required return. If you leave this out for a function
whose return type is int, then the compiler will complain that you broke your promise

39

3 C++ Language Basics

Figure 3.10: Figure 10: The Function

40

3.6 Custom Functions

to return an int. In this case, the operating system interprets a 0 as “nothing went
wrong”. Just for fun, see what happens when you change the 0 to a 1, and run the code.

3.6 Custom Functions

We will now define our own function and make use of it as a word template. Type the
sample code into your editor and run it.� �
#include <iostream>
using namespace std;

void greet(string person){
cout << "Hi␣there␣" << person << "." << endl;

}

int main() {
greet("moon");
greet("red␣balloon");
greet("comb");
greet("brush");
greet("bowl␣full␣of␣mush");
return 0;

}� �
The output shows a familiar bedtime story.� �
Hi there moon.
Hi there red balloon.
Hi there comb.
Hi there brush.
Hi there bowl full of mush.� �
In this new code, notice the second function greet() which looks the same but differ-
ent from main(). It has the same curly brackets to hold the code block, but the return
type is different. It has the same pair of parentheses, but this time there is something
inside. And what about that required return statement? The void keyword is used in
place of a return type when a function does not return anything. So, since greet()
has a void return type, the compiler will not complain should you leave out the return.
In the parentheses, you see string person. This is a parameter, an input-value for
the function to use. In this case, it’s a bit like find-and-replace. Down in main(), you
see I call greet() five times, and each time, I put a different string in quotes between
the parentheses. Those are arguments.

As an aside, to help in the technicality of discerning between when to call them argu-
ments and when to call them parameters, see this code example:

41

3 C++ Language Basics

� �
void myFunction(int parameter1, int parameter2){

//todo: code
}

int main(){
int argument1 = 4;
int argument2 = 5;
myFunction(argument1,argument2);
return 0;

}� �
Getting back to the previous example, those five lines of code are all function calls.
They are telling greet() to execute, and passing it the one string argument so it can
do its job. That one string argument is made available to greet()’s inner code via the
argument called person. To see the order of how things happen, take a look at Figure
11.

Figure 3.11: Figure 11. Function Call Flow

The colorful line in Figure 11 is the path drawn by an imaginary playback head that
steps over the code as it executes. We start at the blue part and go in through the
main entrypoint, then encounter greet(), which is where a jump happens. As the line
turns green, it escapes out of main() temporarily so it can go follow along greet() for
a while. About where the line turns yellow, you see it finished executing the containing
code inside greet() and does a second jump (the return) this time going back to the
previous saved place, where it continues to the next statement. The most obvious ad-
vantage we can see in this example is the reduction of complexity from that long cout
statement to a simple call to greet(). If we must call greet() five times, having the
routine encapsulated into a function gives it convenience power. Let’s say you wanted
to change the greeting from “Good night” to “Show’s over”. Rather than updating all
the lines of code you cut-and-pasted, you could just edit the one function, and all the
uses of the function would change their behavior along with it, in a synchronized way.

42

3.7 Encapsulation of Complexity

Furthermore, code can grow to be pretty complex. It helps to break it down into small
routines, and use those routines as your own custom building blocks when thinking
about how to build the greater software. By using functions, you are liberated from
the need to meticulously represent every detail of your system; therefore a function
is one kind of abstraction just like abstraction in art. This sort of abstraction is called
encapsulation of complexity because it’s like taking the big complex thing and putting
it inside a nice little capsule, making that big complex thing seem smaller and simpler.
It’s a very powerful idea — not just in code.

3.7 Encapsulation of Complexity

Imagine actor Laurence Fishburne wearing tinted Pince-nez glasses, offering you two
options that are pretty complicated to explain. On the one hand, he is willing to help
you escape from the evil Matrix so that you may fulfill your destiny as the hacker hero,
but it involves living life on life’s terms and that is potentially painful but whatever.
The story must go on and btw, there is a pretty girl. On the other hand, he is also
willing to let you forget this all happened, and mysteriously plant you back in your tiny
apartment where you can go on living a lie, none the wiser. These two options are
explained in the movie The Matrix and then the main character is offered the choice
in the form of colored pills, as a way to simplify an otherwise wordy film scenario. The
two complex choices are encapsulated into a simple analogy that is much easier for
movie audiences to swallow. See Figure 12.

Rather than repeating back the entire complicated situation, Neo (the main character)
needed only to swallow one of the pills. Even if it were real medicine, the idea of
encapsulating complexity still applies. Most of us do not have the expertise to practice
medicine in the most effective way, and so we trust physicians and pharmacologists to
create just the right blend of just the right herbs and chemicals. When you swallow a
pill, it is like calling that function because you have the advantage of not needing to
understand the depths of the pill. You simply trust that the pill will cause an outcome.
The same is true with code. Most of the time, a function was written by someone else,
and if that person is a good developer, you are free to remain blissfully ignorant of
their function’s inner workings as long as you grasp how to properly call their function.
In this way, you are the higher-level coder, meaning that you simply call the function
but you did not write it. Someone who creates a project in OpenFrameworks is sitting
on the shoulders of the OpenFrameworks layer. OpenFrameworks sits on the shoulders
of the OpenGL Utility Toolkit, which sits on OpenGL itself, and so on. In other words,
an OpenFrameworks project is a higher-level application of C++, a language with a
reputation for lower-level programming. As illustrated in Figure 13, I sometimes run
into a problem when I tell people I wrote an interactive piece in C++.

There are a few advantages to using C++ over the other options (mostly scripting) for
your new media project. The discussion can get quite religious (read: heated) among

43

3 C++ Language Basics

Figure 3.12: Figure 12. Red Pill and Blue Pill from The Matrix

those who know the details. If you seek to learn C++, then usually it is because you seek
faster runtime performance, because C++ has more libraries that you can snap in to
your project, or because your mentor is working in that language. An OF project is con-
sidered higher-level because it is working with a greater encapsulation of complexity,
and that is something to be proud of.

3.8 Variables (part 1)

A “thing” is a “think”, a unit of thought

– Alan Watts

Please enter the following program into ideone and run it.� �
#include <iostream>
using namespace std;

int main(){
cout << "My␣friend␣is␣" << 42 << "␣years␣old." << endl;
cout << "The␣answer␣to␣the␣life␣the␣universe␣and␣everything␣is␣"

<< 42 << "." << endl;
cout << "That␣number␣plus␣1␣is␣" << (42+1) << "." << endl;
return 0;

44

3.8 Variables (part 1)

Figure 3.13: Figure 13. Standing on Shoulders of Giants

45

3 C++ Language Basics

}� �
The output looks like this:� �
My friend is 42 years old.
The answer to the life the universe and everything is 42.
That number plus 1 is 43.� �
We understand from a previous lesson that stuff you put between the << operators
will get formatted into the cout object, and magically end up in the output console.
Notice in the last line, I put a bit of light arithmetic (42+1) between parentheses, and it
evaluated to 43. That is called an expression, in the mathematics sense. These three
lines of code all say something about the number 42, and so they all contain a literal
integer. A literal value is the contents typed directly into the code; some would say
“hard wired” because the value is fixed once it is compiled in with the rest.

If I want to change that number, I can do what I know from word processing, and “find-
and-replace” the 42 to a new value. Now what if I had 100,000 particles in a 3d world.
Some have 42s that need changing, but other 42s that should not be changed? Things
can get both heavy and complex when you write code. The most obvious application
of variables is that they are a very powerful find-and-replace mechanism, but you’ll
see that variables are useful for more than that. So let’s declare an integer at the top
of the code and use it in place of the literal 42s.� �
#include <iostream>
using namespace std;

int main(){

int answer = 42;

cout << "My␣friend␣is␣" << answer << "␣years␣old." << endl;
cout << "The␣answer␣to␣the␣life␣the␣universe␣and␣everything␣is␣"

<< answer << "." << endl;
cout << "That␣number␣plus␣1␣is␣" << (answer+1) << "." << endl;
return 0;

}� �
Now that I am using the variable answer, I only need to change that one number in my
code, and it will show up in all three sentences as 42. That can be more elegant than
find-and-replace. Figure 18 shows the syntax explanation for declaring and initializing
a variable on the same line.

It is also possible to declare a variable and initialize it on two separate lines. That
would look like:� �
int answer;
answer = 42;� �
46

3.8 Variables (part 1)

Figure 3.14: Figure 18. Variable declaration and initialization

47

3 C++ Language Basics

In this case, there is a moment after you declare that variable when its answer may be
unpredictable and glitchy because in C (unlike Java), fresh variables are not set to zero
for free — you need to do it. If you don’t, the variable can come up with unpredictable
values — computer memory-garbage from the past. So, unless you intend to make
glitch art, please always initialize your variable to some number upon declaring it,
even if that number is zero.

3.8.1 Naming your variable

Notice the arrow below saying “must be a valid name”. We invent new names to give
our namespaces, functions, variables, and other constructs we define in code (classes,
structs, enums, and other things I haven’t taught you). The rules for defining a new
identifier in code are strict in a similar way that choosing a password on a website
might be.

• Your identifier must contain only letters, numbers, and underscores.
• it cannot begin with a number, but it can certainly begin with an underscore.
• The name cannot be the same as one of the language keywords (for example, the
word void)

The following identifiers are okay.� �
a
A
counter1_
x_axis
perlin_noise_frequency_

// a single underscore is fine___
// several underscores are fine� �

Notice lowercase a is a different identifier than uppercase A. Identifiers in C++ are case-
sensitive. The following identifiers are not okay.� �
1infiniteloop // should not start with a number
transient-mark-mode // dashes should be underscores
@jtnimoy // should not contain an @
the locH of sprite 1 // should not contain spaces
void // should not be a reserved word
int // should not be a reserved word� �
naming your variable void_int, although confusing, would not cause any compiler
errors because the underscore joins the two keywords into a new identifier. Occasion-
ally, you will find yourself running into unqualified id errors. Here is a list of C++
reserved keywords to avoid when naming variables. C++ needs them so that it can
provide a complete programming language.

48

3.8 Variables (part 1)

� �
alignas alignof and and_eq asm auto bitand bitor bool break case

catch
char char16_t char32_t class compl const constexpr const_cast

continue
decltype default delete do double dynamic_cast else enum explicit
export extern false final float for friend goto if inline int long
mutable namespace new noexcept not not_eq nullptr operator or or_eq
override private protected public register reinterpret_cast return
short signed sizeof static static_assert static_cast struct switch
template this thread_local throw true try typedef typeid typename
union unsigned using virtual void volatile wchar_t while xor xor_eq� �

3.8.2 Naming conventions

Differences of habit and language are nothing at all if our aims are identical
and our hearts are open.

–Albus Dumbledore

Identifiers (variables included) are written with different styles to indicate their various
properties, such as type of construct (variable, function, or class?), data type (integer
or string?), scope (global or local?), level of privacy, etc. You may see some identi-
fiers capitalized at the beginning and using CamelCase, while others remain all lower_
case_using_underscores_to_separate_the_words. Global constants are found to
be named with ALL_CAPS_AND_UNDERSCORES. Another way of doing lower-case nam-
ing is to start with a lowercase letterThenCamelCaseFromThere. You may also see a
hybrid, like ClassName__functionName__variable_name. These different styles can
indicate different categories of identifiers.

More obsessively, programmers may sometimes use what is affectionately nicknamed
Hungarian Notation, adding character badges to an identifier to say things about it
but also reduce the legibility, for example dwLightYears and szLastName. Naming
conventions are not set in stone, and certainly not enforced by the compiler. Collabo-
rators generally need to agree on these subtle naming conventions so that they don’t
confuse one another, and it takes discipline on everyone’s part to remain consistent
with whatever convention was decided. The subject of naming convention in code is
still a comically heated debate among developers, just like deciding which line to put
the curly brace, and whether to use tabs to indent. Like a lot of things in programming,
someone will always tell you you’re doing it wrong. That doesn’t necessarily mean you
are doing it wrong.

49

3 C++ Language Basics

3.8.3 Variables change

We call them variables because their values vary during runtime. They are most useful
as a bucket where we put something (let’s say water) for safe keeping. As that usually
goes, we end up going back to the bucket and using some of the water, or mixing a
chemical into the water, or topping up the bucket with more water, etc. A variable is
like an empty bucket where you can put your stuff. Figure 19 shows a bucket from the
game Minecraft.

Figure 3.15: Figure 19. Bucket, courtesy of Mojang AB

If a computer program is like a little brain, then a variable is like a basic unit of re-
membrance. Jotting down a small note in my sketchbook is like storing a value into a
variable for later use. Let’s see an example of a variable changing its value.� �
#include <iostream>
using namespace std;

int main(){
int counter = 0;
cout << counter;
counter = 1;
cout << counter;
counter = 2;
cout << counter;
counter = 3;
cout << counter;
counter = 4;
cout << counter;
counter = 5;
cout << counter;
return 0;

}� �
The output should be 012345. Notice the use of the equal sign. It is different than
what we are accustomed to from arithmetic. In the traditional context, a single equal
sign means the expressions on both sides would evaluate to the same value. In C, that

50

3.8 Variables (part 1)

is actually a double equal (==) and we will talk about it later. A single equal sign means
“Solve the expression on the right side and store the answer into the variable named
on the left side”. It takes some getting used to if you haven’t programmed before. If I
were a beginning coder (as my inner child is perpetually), I would perhaps enjoy some
alternative syntax to command the computer to store a value into a variable. Some-
thing along the lines of: 3 => counter as found in the language ChucK by Princeton
sound lab, or perhaps something a bit more visual, as my repurposing of the Minecraft
crafting table in figure 20.

Figure 3.16: Figure 20. Minecraft crafting table repurposed for variable assignment

The usefulness of having the variable name on the left side rather than the right be-
comes apparent in practice since the expressions get get quite lengthy! Beginning a
line with varname = ends up being easier for the eyeball to scan because it’s guar-
anteed to be two symbols long before starting in on whatever madness you plan on
typing after the equals sign.
Analyzing the previous code example, we see the number increments by 1 each time
before it is output. I am repeatedly storing literal integers into the variable. Since a
programming language knows basic arithmetic, let us now try the following modifica-
tion:� �
#include <iostream>
using namespace std;

int main(){
int counter = 0;
cout << counter;
counter = counter + 1;
cout << counter;
counter = counter + 1;
cout << counter;
counter = counter + 1;

51

3 C++ Language Basics

cout << counter;
counter = counter + 1;
cout << counter;
counter = counter + 1;
cout << counter;
return 0;

}� �
The output should still be 012345. By saying counter = counter + 1, I am increment-
ing counter by 1. More specifically, I am using counter in the right-hand “addition”
expression, and the result of that (one moment later) gets stored into counter. This
seems a bit funny because it talks about counter during two different times. It re-
minds me of the movie series, Back to the Future, in which Marty McFly runs into past
and future versions of himself. See Figure 21.

Figure 3.17: Figure 21. The future Marty uses the past Marty

Great Scott, that could make someone dizzy! But after doing it a few times, you’ll
see it doesn’t get much more complicated than what you see there. This is a highly
practical use of science fiction, and you probably aren’t attempting to challenge the
fabric of spacetime (unless you are Kyle McDonald, or maybe a Haskell coder). The
point here is to modify the contents of computer memory, so we have counter from
one instruction ago, in the same way that there might already be water in our bucket
when we go to add water to it. Figure 22 shows bucket = bucket + water.
Incrementing by one, or adding some value to a variable is in fact so commonplace in
all programming that there is even syntactic sugar for it. Syntactic Sugar is a redun-
dant grammar added to a programming language for reasons of convenience. It helps
reduce typing, can increase comprehension or expressiveness, and (like sugar) makes
the programmer happier. The following statements all add 1 to counter.� �
counter = counter + 1; // original form
counter += 1; // "increment self by" useful because it's

less typing.
counter++; // "add 1 to self" useful because you don't

need to type a 1.
++counter; // same as above, but with a subtle

difference.� �
52

3.8 Variables (part 1)

Figure 3.18: Figure 22. bucket = bucket + water

Let’s test this in the program.� �
#include <iostream>
using namespace std;

int main(){
int counter = 0;
cout << counter;
counter++;
cout << counter;
counter++;
cout << counter;
counter++;
cout << counter;
counter++;
cout << counter;
counter++;
cout << counter;
return 0;

}� �
Yes, it’s a lot less typing, and there are many ways to make it more concise. Here is one
way.� �
#include <iostream>
using namespace std;

int main(){
int counter = 0;
cout << counter++;

53

3 C++ Language Basics

cout << counter++;
cout << counter++;
cout << counter++;
cout << counter++;
cout << counter++;
return 0;

}� �
The answer is still 012345. The postfix incrementing operator will increment the vari-
able even while it sits inside an expression. Now let’s try the prefix version.� �
#include <iostream>
using namespace std;

int main(){
int counter = 0;
cout << ++counter;
cout << ++counter;
cout << ++counter;
cout << ++counter;
cout << ++counter;
cout << ++counter;
return 0;

}� �
If you got the answer 123456, that is nomistake! The prefix incrementing operator is dif-
ferent from its postfix sister in this very way. With counter initialized as 0, ++counter
would evaluate to 1, while counter++ would still evaluate to 0 (but an incremented ver-
sion of counter would be left over for later use). The output for the following example
is 1112.� �
#include <iostream>
using namespace std;

int main(){
int counter = 0;
cout << ++counter; // 1: increments before evaluating
cout << counter; // 1: has NOT changed.
cout << counter++; // 1: increments after evaluating
cout << counter; // 2: evidence of change.
return 0;

}� �
For arithmetic completeness, I should mention that the subtractive decrementing op-
erator (counter–) also exists. Also, as you might have guessed by now, if one can
say counter + 1, then a C compiler would also recognize the other classic arithmetic
like counter - 3 (subtraction), counter * 2 (asterisk is multiplication), counter
/ 2 (division), and overriding the order of operations by using parentheses, such as

54

3.9 Conclusion

(counter + 1)/ 2 evaluating to a different result than counter + 1 / 2. Putting a
negative sign before a variable will also do the right thing and negate it, as if it were be-
ing subtracted from zero. C extends this basic palette of maths operators with boolean
logic and bitwise manipulation; I will introduce them in Variables part 2.

There are a few more essentials to learn about variables, but we’re going to take what
we’ve learned so far and run with it in the name of fun. In the meantime, give yourself
another pat on the back for making it this far! You learned what variables are, and
how to perform basic arithmetic on them. You also learned what the ++ operator does
when placed before and after a variable name.

The C++ language gets its name from being the C language plus one.

3.9 Conclusion

Congratulations on getting through the first few pages of this introduction to C++.
With these basic concepts, you should be able to explore plenty far on your own, but
I will admit that it is not enough to prepare you to comprehend the code examples
in the rest of ofBook. Because of limited paper resources, what you’ve seen here is
a “teaser” chapter for a necessarily lengthier introduction to the C++ language. That
version of this chapter got so big that it is now its own book — available unabridged
on the web, and possibly in the future as its own companion book alongside ofBook.
Teaching the C++ language to non-programmers is indeed a large subject all itself,
which could not be effectively condensed to 35 pages, let alone the 100+ page book it
grew to be. If you’re serious about getting into OpenFrameworks, I highly recommend
you stop and read the unabridged version of this chapter before continuing in of-
Book, so that youmay understand what you are reading. You will find thosematerials at
https://github.com/openframeworks/ofBook/tree/master/02_cplusplus_basics/unabridged.md

3.10 PS.

Stopping the chapter here is by no means intended to separate what is important to
learn about C++ from what is not important. We have simply run out of paper. In
lieu of how important the rest of this intro to C++ is, and based on ofZach’s teaching
experience, here is more of what you’ll find in the unabridged version:

• Variables exist for different periods of time - some for a long time, and some for
a small blip in your program’s lifecycle. This subject of scope is covered in the
unabridged version of this book, entitled Variables (part 2).

• Variables have a data type. For example, one holds a number while another holds
some text. More about that in Fundamental Types.

55

3 C++ Language Basics

• It’s important to reiterate that unlike Processing, variables do not necessarily
start with a zero value. You must initialize them with your desired value, and oth-
erwise there’s no telling what will be waiting there for you. You’ll find additional
discussion of this phenomenon in the introduction to arrays.

The best way to predict your future is to create it.

–Abraham Lincoln

56

4 OF structure

by Roy Macdonald¹

Let’s get into openFrameworks (I’ll refer to it as OF from now on). The philosophy
chapter talks about OF in very abstract and conceptual manner, which is really useful
for understanding the design of the OF environment. Now, let’s take a look at what the
OF download looks like.

I have found that it is very useful to explain OF by making analogies to cooking. Coding
and cooking have a lot of things in common, and most people are familiar with the
act of cooking. In this chapter, I’ll be drawing connections between processes and
terminology in cooking and openFrameworks.

4.1 First things first

You need to download the OF version and the IDE (Integrated Development Environ-
ment) that suits your platform. The IDE is a piece of software that will let you write,
compile, run and debug the code you write. It is “ integrated” because it uses other
pieces of software to do each of the mentioned tasks. You can run your code without
using the IDE, but the IDE will make your programming life much easier.

Go to www.openframeworks.cc/downloads and download the version that you need.
By the side of each available version you will find a link to the where to download the
needed IDE and how to install it.

4.2 Welcome to your new kitchen

4.2.1 IDE:

As said before, the Integrated Development Environment, IDE, is the application you
will be using to build your openFrameworks projects. It will let you write code, compile
(bake it), test it and debug it (find out what is giving you problems, if there is any, and
fix it). There are several different IDEs, at least one for each platform you might be
utilizing.

¹http://github.com/roymacdonald/

57

www.openframeworks.cc/downloads
http://github.com/roymacdonald/

4 OF structure

The IDE is your new kitchen, where you’ll find all the tools to cook incredible stuff. Yet
there are a lot of different kitchen brands, just like IDEs. All do the same but things
might be laid out and named in a slightly different way. If you know how to use one,
you can use any other. For clarification, I will go through each IDE and show where you
will find the most used commands, controls and settings. Only read for the IDE you are
going to use.

All IDEs have a similar interface:

Figure 4.1: Abstract IDE interface

• Toolbar and Run Button: In the tool bar you’ll find several useful buttons, such
as open, save, save all, et cetera. The “run” button is very important. Usually it is
labeled with a triangle pointing to the right, like the “play” button. When you press
it, it will compile your code and if it went with no problem it will automatically
run your code. Hence this is a frequently used button.

• File selector and project navigator area: Here you will see your project and the
files associated with it. Usually it is displayed like a hierarchically ordered list of
files. Here you’ll find all the OF library files, as well as the files that are particular
to your project.

• Editing area: When you open a file in the project navigation area, usually by
double clicking it, it should open in the editing area. This looks just like any
regular text-editing software, and behaves quite much the same.

• Console: This is where your app, when running, outputs messages. These mes-
sages are really useful for debugging, You can print text messages to the console
using the cout comand or ofLog(...) function.

58

4.3 Running examples

4.2.1.1 Apple Xcode

Xcode is Apple’s IDE. Used both for iOS apps and desktop apps. Even though there
are other IDEs for MacOSX, Xcode is a a pretty mature one with lots of nice and useful
features, especially for dealing with iOS apps.

Use the latest version of Xcode and read the setup guide.

4.2.1.2 Microsoft Visual Studio 2012 Express

This is Microsoft’s IDE, it is aimed for Windows development. It’s a commercial product,
but there’s a free version you can download called “Express”.

Figure 4.2: VS screenshot

4.2.1.3 Code::Blocks

Code::Blocks is a free IDE. It runs on several platforms, but OF supports it for windows
and linux. It is quite “light” in terms of downloading and we use it in workshops over
VS, which can be a bit intimidating for beginners. For windows, follow the setup in-
structions (including step “e”) carefully. For linux, there are scripts that help install
dependencies and the codeblocks IDE.

4.3 Running examples

Find the OF version that you downloaded and decompress it. From now on we will
refer to this folder as the OF root folder. You can place the OF root folder anywhere

59

4 OF structure

you like. One thing to stress is that OF is designed to be self contained – everything
you need will stay in one folder and this folder can even be moved around on your
drive if need be. If you download another version of openframeworks, it should stay
in it’s own folder and don’t try to merge them.

Open it. Inside of it you will find several folders which we will describe below in more
detail. For now, navigate to the examples folder and let’s try to compile examples/-
graphics/graphicsExample. If you are on OSX, click on the graphicsExample.xcodeproj.
If you are using visual studio, choose the “sln” file. On code::blocks, choose the
“workspace” file.

As a quick side note, about workspace files, the reason we ask you to open those rather
then the project file is that they contain a sub-project to build the OF library also. If
you have any doubts, please read the readme for your given platform.

Now your IDE should open and load this example. It should look like the IDE screen-
shots above. Locate the “Run” button or menu option and click on it. The example
should compile (which might take a while, since the first time you compile you are
comiling the OF library also). You’ll see alot of files being compiled the first time –
don’t worry, this will just happen once, when the OF library needs to be rebuilt. Feel
free to get a cup of coffee or stretch. Long compile times are great moments to take a
screen break.

If everything went well, a new window will pop up and display the example you just
compiled. If this happened, congrats! You just have installed and compiled openFrame-
works successfully and you are ready to go on. If this didn’t happen, the first rule is,
don’t panic! check the notes below for each IDE and be sure to read the release notes
that come with OF.

• Xcode: make sure that the popdown menu just at the right of the run button
has selected the item with the name of your example and not the one named
“openFrameworks.” There might be more than one item with the name of the
example you are trying to run. Select anyone as long as it is not the one named
“openFrameworks”. This popdown menu selects the target you want to compile.
If “openFrameworks” is selected you will just compile the openFrameworks core
and not the example code. When you select the other items xcode will compile
both the OF core and the code for your example and when done it will run the
example.

• VS: make sure you’ve opened the .sln file. Visual studio express doesn’t have a
triangle button by default (I think it looks like a gear for debugging). Locate the
run without debugging option², which you can add to the menu bar if you want
to customize the IDE.

• CB: make sure you’ve opened the .workspace file. If you are opening up other
projects, be sure to close the current workspace first, as CB doesn’t handle

²http://social.msdn.microsoft.com/Forums/vstudio/en-US/7b2182f9-0e46-4e6f-a8db-3ab5af39f14b/
start-without-debugging-option-missing-from-debug-menu?forum=vsdebug

60

http://social.msdn.microsoft.com/Forums/vstudio/en-US/7b2182f9-0e46-4e6f-a8db-3ab5af39f14b/start-without-debugging-option-missing-from-debug-menu?forum=vsdebug
http://social.msdn.microsoft.com/Forums/vstudio/en-US/7b2182f9-0e46-4e6f-a8db-3ab5af39f14b/start-without-debugging-option-missing-from-debug-menu?forum=vsdebug

4.4 OF folder structure

multiple projects open very well.

• With all IDEs, the play button will compile and run the project, but sometime you
might need to hit the button twice if the window doesn’t launch.

If the graphics example works, spend some time going through the other OF examples
and running them. Usually it’s good practice to close the current project / workspace
completely before you open another one. Once the OF library is compiled It should be
fun!

If you have trouble, please keep track of what errors you have, what platform you are
on, and start with using the OF forum³. There’s years of experience there, and really
helpful folks who can help answer questions. First, try searching for a specific error
and if you don’t see it, post a question in the forum. When you are beginning it can be
quite frustrating, but the community is very good at helping each other out.

Once done continue reading.

4.4 OF folder structure

Inside the OF root folder you will find several other folders, at least, the following:

4.4.0.4 Addons

The “addons” folder will contain the included “core” addons. Addons are extra pieces
of code that extend OF’s functionalities, allowing you to do almost anything with OF.
Addons are usually written by third parties that have shared these. The “core” addons,
the ones already included in your OF download, are addons that are used so frequently
that it has been decided to include them as part of the official OF download. These
are coded and maintained by OF’s core developers.
Check the examples/addons folder in your OF root folder where you will find at least
one example about how to use each of these addons. You can also go to ofxAddons⁴
where you’ll find a huge collection of additional addons from the community.

4.4.0.5 Apps

This is the folder where you put your project files as you make new projects. Your cur-
rent OF download contains the folder named “myApps” inside of “apps”, and this is

³http://forum.openframeworks.cc/
⁴http://ofxaddons.com/

61

http://forum.openframeworks.cc/
http://ofxaddons.com/

4 OF structure

where the project generator will default to when you make a new project. One impor-
tant thing to note is that the project is positioned relatively to the libs folder, ie, if you
were to look inside the project file you’d see relative folder paths, ie ../../../libs.
This image is showing how ../../../libs might work visually:

Figure 4.3: app position to root

A key thing to note is that your project files always have to live at this heigh away
from the root. If you alter their heigh, they won’t find the other pieces they need to
compile. This is a very common mistake for beginners, especially as you start to find
example projects and bring them in OF to test, etc. Please make sure you understand
that projects are always setup relative to the root level. This is what makes the whole
OF folder be able to be anywhere on your hard drive – it’s all a self contained package.
This is probably the #1 issue beginners have, so it’s worth emphasizing.

4.4.0.6 Examples

This is a folder with examples, sorted out by topic. There are a big bunch of examples
that cover almost all of OF’s aspects. Each example is made with the idea of keeping
it simple and focused to the particular aspect it tries to address, thus making it easily
understandable and a good starting point when you want to do something similar in
your project.

4.4.0.7 libs

These are the libs that openframeworks uses to compile your project. They include
things like freeType for typography support, freeImage for image loading, glfw for win-
dowing, etc. Also the code for openframeworks is in libs, as well as the project files
that help compile OF. If you need to look at the source code, here’s where to look.

4.4.0.8 other

Here you’ll find an Arduino sketch for using with the serial example located at exam-
ples/communication/. This is handy to check that your serial communication with

62

4.4 OF folder structure

Arduino is set up correctly and working.

4.4.0.9 projectGenerator

OF now ships with a simple project generator which is really useful for making new
projects. One of the larger challenges has always been making a new project and this
tool takes a template (located in the scripts folder) and modifies it, chaning the name
to a new name that you choose and even allowing you to add addons. It allows you to
place the project anywhere you want, and while we’ve structured all the examples to
be a certain distance away from the root, you can set the position using this tool (ie, if
you put the project deeper, it will change the ../../../libs to ../../../../libs,
for examples). It’s designed to make it easy / trivial to start sketching in code, without
worrying too much about making a new project. In the past we’ve always recommend
that you copy an old project and rename it, but this is a more civilized approach to
making projects. Check the readme file where the usage of this app is described.

4.4.1 The OF Pantry:

Your default new kitchen will only have tools for coding, but the OF kitchen comes with
a super nice pantry, filled up with really nice, cool and useful stuff.

Imagine that you want to cook something but your kitchen has no pantry or if it has
it is completely empty. In such conditions, cooking anything would be quite difficult,
as you’ll have to go out and buy the things you need and you probably won’t find
everything in one outing. This is not a nice scenario, especially if you want to get
creative and make awesome things.

So, what happens when you have your pantry filled with OF’s components? You will
be able to cook whatever you want because some really good ingredients are already
there. Additionally, there are some really nice tools in there. This will let you complete
recipes in a short amount of time, leaving you more time to get creative and try out
new and more delicious recipes.

4.4.1.1 What is inside the OF pantry

Here you will find a lot of different things, from ingredients to tools, all ordered accord-
ing to use. This is a breakdown of how openframeworks code is organized (as well as
the examples) and should give you a sense of what OF contains:

• 3D

– Tools for drawing basic 3D polygonal objects, such as spheres, cubes, pyra-
mids, etc.

63

4 OF structure

– ofCamera, ofEasyCam 3d cameras for navigating and viewing your 3D scene,
either interactively or not.

– ofNode a 3D point in space, which is the base type for any 3d object, allowing
it to be moved, rotated, scaled, nested and drawn.

– ofMesh A primitive for batching points in 3D space that allows you to draw
them in several different ways such as points, lines, lines strips, triangles,
triangles strips, and attach textures (images) to these. All of this is done
very efficiently using your computer’s GPU.

– functions to help load and save 3D objects.

• app

– Tools for setting and getting properties of your app such as window size,
position, different drawing modes, framerate, et cetera.

– different windowing systems, such as ofAppNoWindow which sets up open-
frameworks in a windowless context for example.

• communication

– ofSerial which provides simple serial port communication
– ofArduino which allows openframeworks to communicate via Firmata

• events

– this is code for the OF event manager, allowing you to tap into app events if
you need or even creating your own events.

• gl

– OpenGL is the library for using the computer’s GPU, this folder contains gl
specific functionality such as VBOs (Vertex Buffer Object), FBOs (Frame Buffer
Object), Renderers, Lights, Materials, Shaders, Textures, and several other GL
utilities.

– OF implements different rendering pipelines, Fixed and Programable ren-
dering pipelines as well as OpenGL ES (used on less powerful devices such
as smartphones and the Raspberry Pi) – most of this code is found in the gl
folder.

• graphics

– There are a lot of capabilities here, such as loading and saving images of
almost any kind, implementing several different methods for drawing in 2D,
and exhibiting colors and styles. Most of the drawing tools rely on OpenGL
so these are usually very fast. Graphics also allows you to render as PDF, and
it features typography with several kinds of rendering options and utilities.

– There are useful objects like ofImage, a class for loading, saving and drawing
images

– ofTrueTypeFont is a library for loading and drawing true type fonts

64

4.4 OF folder structure

• math

– in ofMath you’ll find things like vectors (ie ofVec2f, ofVec3f) , matrices (ie
ofMatrix3x3, ofMatrix4x4), qaternions and some really useful math help
functions like ofRandom and ofNoise.

• sound

– openframeworks has both low level sound, ofSoundStream, for direct ac-
cess to the sound card, as well as higher level code osSoundPlayer for
playing samples and sound effects.

• base types

– A lot of different base types used extensively within OF. For folks that want
to understand the archtecture of OF, this is a useful place where you’ll find
base types for common elements.

• utils

– Utilities for file input and output, logging, threading, system dialogs (open,
save, alert), URL file loader, reading and saving XML files (super useful for
storing and reading your app’s settings)

– ofDirectory which can help iterate through a directory

• video

– Video Grabber and player, with behind-the-scenes implementations for all
the supported platforms.

– ofVideoGrabber helps with grabbing from a webcam or attached camera
– ofVideoPlayer helps with playing video files

4.4.1.2 Addons

As mentioned before, addons extend OF core functionalities, and in each OF distribu-
tion there are several included addons, usually referred to as “core addons”:

• ofx3DModelLoader Used for loading 3Dmodels into your OF project. It only works
with .3ds files.

• ofxAssimpModelLoader Also loads 3D models into your OF project, but it is done
using the assimp⁵ library, which supports a wide variety of 3D file formats, even
animated 3D objects.

• ofxGui This is the default GUI (Graphical User Interface) for OF. It lets you add
sliders and buttons so you can easily modify parameters while your project is
running. It relies heavilly on ofParameters and ofParameterGroup. It allows you
to save and load the values for the parameters that you’ve adjusted.

⁵http://assimp.sourceforge.net/

65

http://assimp.sourceforge.net/

4 OF structure

• ofxKinect Recently added as a core addon. As you probably infer, it’s for using
a Microsoft XBox Kinect 3D sensor with your OF project. This addon relies on
libfreenect⁶, so you can only access the depth and rgb images that the kinect
reads and adjust some of its parameters, like tilt and light. It includes some handy
functions that allow you to convert Kinect’s data between several different kinds.
Please note that ofxKinect doesn’t perform skeleton tracking. For such thing you
need to use ofxOpenNI.

• ofxNetwork Lets you deal with network protocols such as UDP and TCP. You can
use it to communicate with other computers over the network. Check out network
chapter for more information.

• ofxOpenCv This is OF’s implementation of the best and most used Computer
Vision code library, openCV. Computer Vision is a complete world by itself, and
being able to use openCV right out-of-the-box is a super important and useful
OF feature.

• ofxOscOSC (Open Sound Control) implementation for OF. OSC easily comunicates
with other devices or applications within the same network. OSC is used to send
messages and parameters from one app to another one. Several chapters in this
book discuss OSC.

• ofxSvg Loads and displays SGV files. These are vector graphics files, usually ex-
ported from vector drawing programs such as Adobe Illustrator.

• ofxThreadedImageLoader Loads images on a different thread, so your main
thread (the one that draws to your screen) doesn’t get stuck while loading
images. Really useful when loading online images.

• ofxVectorGraphics Used to write out EPS vector graphics files. It the same draw-
ing syntax as OF’s regular drawing syntax, so it is really easy to use. Check chapter
[add correct chapter numbre] for more info about OF’s drawing capabilities.

• ofxXmlSettings This is OF’s simple XML implementation used mostly for loading
and saving settings.

That’s what’s in the pantry. what do you want to cook?

⁶http://openkinect.org/wiki/Main_Page

66

http://openkinect.org/wiki/Main_Page

4.4 OF folder structure

.

67

5 Graphics

By: Michael Hadley¹ with generous editor support from Abraham Avnisan², Brannon
Dorsey³ and Christopher Baker⁴.

This chapter builds off of the C++ Basics and Setup and Project Structure chapters, so
if you aren’t familiar with basic C++ and creating openFrameworks projects, check out
those chapters first.

In sections 1 and 2, we will create “paintbrushes” where the mouse is our brush and our
code defines how our brush makes marks on the screen. In section 3, we will explore
something called “coordinate system transformations” to create hypnotizing, spiraling
rectangles. Source code for the projects is linked at the end of each section. If you
feel lost at any point, don’t hesitate to look at the completed code! You can check out
the whole collection of code here⁵ - both for standard development structure (Xcode,
Code::Blocks, etc.) and for ofSketch.

If you are following along using ofSketch, great! There are a couple things to note. Cod-
ing in ofSketch is a bit different than coding in other Xcode, Code::Blocks, etc. 1) There
will be a few points where variables are added to something called a header file (.h).
When you see those instructions, that means you should put your variables above your
setup() function in ofSketch. 2) You’ll want to use ofSetWindowShape(int width,
int height) in setup() to control the size of your application. 3) Some of the applica-
tions you write will save images to your computer. You can find them in your ofSketch
folder, by looking for ofSketch/data/Projects/YOUR_PROJECT_NAME/bin/data/.

5.1 Brushes with Basic Shapes

To create brushes, we need to define some basic building blocks of graphics. We
can classify the 2D graphics functions into two categories: basic shapes and freeform
shapes. Basic shapes are rectangles, circles, triangles and straight lines. Freeform
shapes are polygons and paths. In this section, we will focus on the basic shapes.

¹http://www.mikewesthad.com/
²http://abrahamavnisan.com/
³http://brannondorsey.com/
⁴http://christopherbaker.net/
⁵https://github.com/openframeworks/ofBook/tree/master/chapters/intro_to_graphics/code

69

http://www.mikewesthad.com/
http://abrahamavnisan.com/
http://brannondorsey.com/
http://christopherbaker.net/
https://github.com/openframeworks/ofBook/tree/master/chapters/intro_to_graphics/code

5 Graphics

5.1.1 Basic Shapes

Before drawing any shape, we need to know how to specify locations on screen. Com-
puter graphics use the Cartesian coordinate system⁶. Remember figure 1 (left) from
math class? A pair of values (x, y) told us how far away we were from (0, 0), the
origin. Computer graphics are based on this same system, but with two twists. First,
(0, 0) is the upper leftmost pixel of the screen. Second, the y axis is flipped such that
the positive y direction is located below the origin figure 1 (center).

If we apply this to the top left of my screen figure 1 (right), which happens to be my
browser. We can see the pixels and identify their locations in our new coordinate
system. The top left pixel is (0, 0). The top left pixel of the blue calender icon (with
the white “19”) is (58, 5).

Figure 5.1: Figure 1: 2D screen coordinates

Now that we can talk about locations, let’s jump into code. Create an openFrameworks
project and call it “BasicShapes” (or something more imaginative). Open the source
file, ofApp.cpp, and navigate to the draw() function. Add the following:� �
ofBackground(0); // Clear the screen with a black color
ofSetColor(255); // Set the drawing color to white

// Draw some shapes
ofRect(50, 50, 100, 100); // Top left corner at (50, 50), 100 wide x

100 high
ofCircle(250, 100, 50); // Centered at (250, 100), radius of 50
ofEllipse(400, 100, 80, 100); // Centered at (400 100), 80 wide x

100 high
ofTriangle(500, 150, 550, 50, 600, 150); // Three corners: (500,

150), (550, 50), (600, 150)
ofLine(700, 50, 700, 150); // Line from (700, 50) to (700, 150)� �
When we run the code, we see white shapes on a black background. Success! Each time
our draw() function executes, three things happen. First, we clear the screen by draw-
ing a solid black background using ofBackground(...)⁷. The 0 represents a grayscale

⁶http://en.wikipedia.org/wiki/Cartesian_coordinate_system
⁷http://www.openframeworks.cc/documentation/graphics/ofGraphics.html#show_ofBackground

70

http://en.wikipedia.org/wiki/Cartesian_coordinate_system
http://www.openframeworks.cc/documentation/graphics/ofGraphics.html#show_ofBackground

5.1 Brushes with Basic Shapes

color where 0 is completely black and 255 is completely white. Second, we specify what
color should be used for drawing with ofSetColor(...)⁸. We can think of this code as
telling openFrameworks to pull out a specific colored marker. When we draw, we will
draw in that color until we specify that we want another color. Third, we draw our basic
shapes with ofRect(...), ofCircle(...), ofEllipse(...), ofTriangle(...) and
ofLine(...). Check out the comments in the example to better understand how we
are using the drawing functions. The functions can be used in other ways as well, so
check out the openFrameworks documentation if you are curious.

ofFill()⁹ and ofNoFill()¹⁰ toggle between drawing filled shapes and drawing out-
lines. The colored marker analogy doesn’t fit, but the concept still applies. ofFill()
tells openFrameworks to draw filled shapes until told otherwise. ofNoFill() does the
same but with outlines. So we can draw two rows of shapes on our screen (figure 2) -
one filled and one outlines - if we modify our draw() function to look like:� �
ofFill(); // If we omit this and leave ofNoFill(), all the shapes

will be outlines!
// Draw some shapes (code omitted)

ofNoFill(); // If we omit this and leave ofFill(), all the shapes
will be filled!

// Draw some shapes (code omitted)� �
The circle and ellipse are looking a bit jagged, so we can fix that with ofSetCircleResolution(...)¹¹.
Circles and ellipses are drawn by connecting a series of points with straight lines. If
we take a close look at the circle in figure 2, and we’ll be able to identify the 20 tiny
straight lines. That’s the default resolution. Try putting ofSetCircleResolution(50)
in the setup() function.

The individual lines that make up our outlines can be jagged too. We can fix that with a
smoothing technique called anti-aliasing¹². We probably don’t need to worry about this
since anti-aliasing will be turned on by default in recent versions of openFrameworks.
If it isn’t, just add ofEnableAntiAliasing()¹³ to setup(). (For future reference, you
can turn it off to save computing power: ofDisableAntiAliasing()¹⁴.)

[Source code for this section¹⁵]

⁸http://openframeworks.cc/documentation/graphics/ofGraphics.html#show_ofSetColor
⁹http://openframeworks.cc/documentation/graphics/ofGraphics.html#!show_ofFill
¹⁰http://openframeworks.cc/documentation/graphics/ofGraphics.html#!show_ofFill
¹¹http://openframeworks.cc/documentation/gl/ofGLProgrammableRenderer.html#!show_

setCircleResolution
¹²http://en.wikipedia.org/wiki/Spatial_anti-aliasing
¹³http://openframeworks.cc/documentation/graphics/ofGraphics.html#show_ofEnableAntiAliasing
¹⁴http://openframeworks.cc/documentation/graphics/ofGraphics.html#show_ofDisableAntiAliasing
¹⁵https://github.com/openframeworks/ofBook/tree/master/chapters/intro_to_graphics/code/1_i_

Basic_Shapes

71

http://openframeworks.cc/documentation/graphics/ofGraphics.html#show_ofSetColor
http://openframeworks.cc/documentation/graphics/ofGraphics.html#!show_ofFill
http://openframeworks.cc/documentation/graphics/ofGraphics.html#!show_ofFill
http://openframeworks.cc/documentation/gl/ofGLProgrammableRenderer.html#!show_setCircleResolution
http://openframeworks.cc/documentation/gl/ofGLProgrammableRenderer.html#!show_setCircleResolution
http://en.wikipedia.org/wiki/Spatial_anti-aliasing
http://openframeworks.cc/documentation/graphics/ofGraphics.html#show_ofEnableAntiAliasing
http://openframeworks.cc/documentation/graphics/ofGraphics.html#show_ofDisableAntiAliasing
https://github.com/openframeworks/ofBook/tree/master/chapters/intro_to_graphics/code/1_i_Basic_Shapes
https://github.com/openframeworks/ofBook/tree/master/chapters/intro_to_graphics/code/1_i_Basic_Shapes

5 Graphics

Figure 5.2: Figure 2: Basic shapes with and without a fill

[ofSketch file for this section¹⁶]

Extensions

1. We can change the thickness of lines using ofSetLineWidth(...)¹⁷. The default
thickness is 1. We use this function like ofFill() and ofSetColor(...) in that
it changes the thickness of the “marker” we use to draw lines. Note: the range
of widths supported by this feature is dependent on your graphics card, so if it’s
not working, it might not be your fault!

2. Draw some rounded rectangles using ofRoundedRect(...)¹⁸.
3. Explore the world of curved lines with ofCurve(...)¹⁹ and ofBezier(...)²⁰.

You can control the resolution using ofSetCurveResolution(...)²¹.

5.1.2 Brushes from Basic Shapes

We survived the boring bits, but why draw one rectangle, when we can draw a million
(figure 3)? That is essentially what we will be doing in this section. We will build
brushes that drop a burst of many small shapes whenever we press the left mouse
button. To make things more exciting, we will mix in some randomness. Start a new
openFrameworks project, called “ShapeBrush.”

5.1.2.1 Single Rectangle Brush: Using the Mouse

We are going to lay down the foundation for our brushes by making a simple one that
draws a single rectangle when we hold down the mouse. To get started, we are going
to need to know 1) the mouse location and 2) if the left mouse button is pressed.

¹⁶https://github.com/openframeworks/ofBook/blob/master/chapters/intro_to_graphics/code/1_i_
Basic_Shapes.sketch

¹⁷http://openframeworks.cc/documentation/graphics/ofGraphics.html#show_ofSetLineWidth
¹⁸http://openframeworks.cc/documentation/graphics/ofGraphics.html#!show_ofRectRounded
¹⁹http://openframeworks.cc/documentation/graphics/ofGraphics.html#!show_ofCurve
²⁰http://openframeworks.cc/documentation/graphics/ofGraphics.html#!show_ofBezier
²¹http://openframeworks.cc/documentation/graphics/ofGraphics.html#!show_ofSetCurveResolution

72

https://github.com/openframeworks/ofBook/blob/master/chapters/intro_to_graphics/code/1_i_Basic_Shapes.sketch
https://github.com/openframeworks/ofBook/blob/master/chapters/intro_to_graphics/code/1_i_Basic_Shapes.sketch
http://openframeworks.cc/documentation/graphics/ofGraphics.html#show_ofSetLineWidth
http://openframeworks.cc/documentation/graphics/ofGraphics.html#!show_ofRectRounded
http://openframeworks.cc/documentation/graphics/ofGraphics.html#!show_ofCurve
http://openframeworks.cc/documentation/graphics/ofGraphics.html#!show_ofBezier
http://openframeworks.cc/documentation/graphics/ofGraphics.html#!show_ofSetCurveResolution

5.1 Brushes with Basic Shapes

Figure 5.3: Figure 3: Okay, not actually a million rectangles

For 1), we can use two openFrameworks functions that return int variables:
ofGetMouseX()²² and ofGetMouseY()²³. We will use them in draw().

For 2), we can find out whether the left mouse button is pressed using ofGetMousePressed(...)²⁴.
The function asks us to pass in an int that represents which mouse button is we
want to know about. openFrameworks provides some “public constants” for use here:
OF_MOUSE_BUTTON_LEFT, OF_MOUSE_BUTTON_MIDDLE and OF_MOUSE_BUTTON_RIGHT.
These public constants are just int variables that cannot be changed and can be
accessed anywhere you have included openFrameworks. So ofGetMousePressed(OF_
MOUSE_BUTTON_LEFT) will return true if the left button is pressed and will return
false otherwise.

Let’s add some graphics. Hop over to the draw() function where we can bring these
new functions together:� �
if (ofGetMousePressed(OF_MOUSE_BUTTON_LEFT)) { // If the left mouse

button is pressed...
ofSetColor(255);
ofSetRectMode(OF_RECTMODE_CENTER);
ofRect(ofGetMouseX(), ofGetMouseY(), 50, 50); // Draw a 50 x 50

rect centered over the mouse
}� �
ofSetRectMode(...)²⁵ allows us to control how the (x, y) we pass into
ofRect(...) are used to draw. By default, they are interpreted as the upper
left corner (OF_RECTMODE_CORNER). For our purposes, we want them to be the center
(OF_RECTMODE_CENTER), so our rectangle is centered over the mouse.

Compile and run. A white rectangle is drawn at the mouse position when we press the
left mouse button…but it disappears immediately. By default, the screen is cleared with
every draw() call. We can change that with ofSetBackgroundAuto(...)²⁶. Passing in
a value of false turns off the automatic background clearing. Add the following lines
into setup():

²²http://www.openframeworks.cc/documentation/events/ofEvents.html#show_ofGetMouseX
²³http://www.openframeworks.cc/documentation/events/ofEvents.html#show_ofGetMouseY
²⁴http://www.openframeworks.cc/documentation/events/ofEvents.html#show_ofGetMousePressedd
²⁵http://www.openframeworks.cc/documentation/graphics/ofGraphics.html#show_ofSetRectMode
²⁶http://openframeworks.cc/documentation/graphics/ofGraphics.html#show_ofSetBackgroundAuto

73

http://www.openframeworks.cc/documentation/events/ofEvents.html#show_ofGetMouseX
http://www.openframeworks.cc/documentation/events/ofEvents.html#show_ofGetMouseY
http://www.openframeworks.cc/documentation/events/ofEvents.html#show_ofGetMousePressedd
http://www.openframeworks.cc/documentation/graphics/ofGraphics.html#show_ofSetRectMode
http://openframeworks.cc/documentation/graphics/ofGraphics.html#show_ofSetBackgroundAuto

5 Graphics

� �
ofSetBackgroundAuto(false);

// We still want to draw on a black background, so we need to draw
// the background before we do anything with the brush
ofBackground(0);� �
First brush, done! We are going to make this a bit more interesting by adding 1) ran-
domness and 2) repetition.

Randomness can make our code dark, mysterious and unpredictable. Meet
ofRandom(...)²⁷. It can be used in two different ways: by passing in two values
ofRandom(float min, float max) or by passing in a single value ofRandom(float
max) where the min is assumed to be 0. The function returns a random value between
the min and max. We can inject some randomness into our rectangle color (figure 4)
by using:� �
float randomColor = ofRandom(50, 255);
ofSetColor(randomColor); // Exclude dark grayscale values (0 - 50)

that won't show on black background� �

Figure 5.4: Figure 4: Drawing a rectangle snake

To finish off this single rectangle brush, let’s add the ability to erase by pressing the
right mouse button by adding this to our draw() function:� �
if (ofGetMousePressed(OF_MOUSE_BUTTON_RIGHT)) { // If the right

mouse button is pressed...
ofBackground(0); // Draw a black background over the screen

}� �
Source code for this section²⁸]

[ofSketch file for this section²⁹]

²⁷http://openframeworks.cc/documentation/math/ofMath.html#!show_ofRandom
²⁸https://github.com/openframeworks/ofBook/tree/master/chapters/intro_to_graphics/code/1_ii_a_

Single_Rectangle_Brush
²⁹https://github.com/openframeworks/ofBook/blob/master/chapters/intro_to_graphics/code/1_ii_a_

Single_Rectangle_Brush.sketch

74

http://openframeworks.cc/documentation/math/ofMath.html#!show_ofRandom
https://github.com/openframeworks/ofBook/tree/master/chapters/intro_to_graphics/code/1_ii_a_Single_Rectangle_Brush
https://github.com/openframeworks/ofBook/tree/master/chapters/intro_to_graphics/code/1_ii_a_Single_Rectangle_Brush
https://github.com/openframeworks/ofBook/blob/master/chapters/intro_to_graphics/code/1_ii_a_Single_Rectangle_Brush.sketch
https://github.com/openframeworks/ofBook/blob/master/chapters/intro_to_graphics/code/1_ii_a_Single_Rectangle_Brush.sketch

5.1 Brushes with Basic Shapes

5.1.2.2 Bursting Rectangle Brush: Creating Randomized Bursts

We now have the basics in place for a brush, but instead of drawing a single rectangle
in draw(), let’s draw a burst of randomized rectangles. We are going use a for loop
to create multiple rectangles whose parameters are randomly chosen. What can we
randomize? Grayscale color, width and height are easy candidates. We can also use a
small positive or negative value to offset each rectangle from mouse position. Modify
draw() to look like this:� �
if (ofGetMousePressed(OF_MOUSE_BUTTON_LEFT)) { // If the left mouse

button is pressed...
ofSetRectMode(OF_RECTMODE_CENTER);
int numRects = 10;
for (int r=0; r<numRects; r++) {

ofSetColor(ofRandom(50, 255));
float width = ofRandom(5, 20);
float height = ofRandom(5, 20);
float xOffset = ofRandom(-40, 40);
float yOffset = ofRandom(-40, 40);
ofRect(ofGetMouseX()+xOffset, ofGetMouseY()+yOffset, width,

height);
}

}� �
But! Add one more thing, inside of setup(), before hitting run: ofSetFrameRate(60).
The frame rate is the speed limit of our program, frames per second (fps). update()
and draw() will not run more than 60 times per second. (ofSketch users - we’ll talk
about update() later.) Note: this is a speed limit, not a speedminimum - our code can
run slower than 60 fps. We set the frame rate in order to control how many rectangles
will be drawn. If 10 rectangles are drawn with the mouse pressed and we know draw()
won’t be called more than 60 times per second, then we will generate a max of 600
rectangles per second.

Compile, run. We get a box-shaped spread of random rectangles (figure 5, left). Why
didn’t we get a circular spread (figure 5, right)? Since xOffset and yOffset could be
any value between -40 and 40, think about what happens when xOffset and yOffset
take on their most extreme values, i.e. (xOffset, yOffset) values of (-40, -40), (40, -40),
(40, 40) and (-40, 40).

If we want a random point within a circle, it helps to think in terms of angles. Imagine
we are at the center of a circle. If we rotate a random amount (the polar angle) and
thenmove a random distance (the polar radius), we end up in a random location within
the circle (assuming we don’t walk so far that we cross the boundary of our circle). We
just defined a point by a polar angle and a polar radius instead of using (x, y). We
have just thought about space in terms of polar coordinates³⁰, instead of Cartesian

³⁰http://en.wikipedia.org/wiki/Polar_coordinate_system

75

http://en.wikipedia.org/wiki/Polar_coordinate_system

5 Graphics

coordinates.

Back to the code. When we figure out our offsets, we want to pick a random direc-
tion (polar angle) and random distance (polar distance) which we can then convert to
Cartesian coordinates (see code) to use as xOffset and yOffset. Our loop inside of
draw() will look like this:� �
for (int r=0; r<numRects; r++) {

ofSetColor(ofRandom(50, 255));
float width = ofRandom(5, 20);
float height = ofRandom(5, 20);
float distance = ofRandom(35);

// Formula for converting from polar to Cartesian coordinates:
// x = cos(polar angle) * (polar distance)
// y = sin(polar angle) * (polar distance)

// We need our angle to be in radians if we want to use sin() or
cos()

// so we can make use of an openFrameworks function to convert
from degrees

// to radians
float angle = ofRandom(ofDegToRad(360.0));

float xOffset = cos(angle) * distance;
float yOffset = sin(angle) * distance;
ofRect(ofGetMouseX()+xOffset, ofGetMouseY()+yOffset, width,

height);
}� �

Figure 5.5: Figure 5: Cartesian brush spread versus polar brush spread

[Source code for this section³¹]

[ofSketch file for this section³²]

³¹https://github.com/openframeworks/ofBook/tree/master/chapters/intro_to_graphics/code/1_ii_b_
Bursting_Rect_Brush

³²https://github.com/openframeworks/ofBook/blob/master/chapters/intro_to_graphics/code/1_ii_a_
Single_Rectangle_Brush.sketch

76

https://github.com/openframeworks/ofBook/tree/master/chapters/intro_to_graphics/code/1_ii_b_Bursting_Rect_Brush
https://github.com/openframeworks/ofBook/tree/master/chapters/intro_to_graphics/code/1_ii_b_Bursting_Rect_Brush
https://github.com/openframeworks/ofBook/blob/master/chapters/intro_to_graphics/code/1_ii_a_Single_Rectangle_Brush.sketch
https://github.com/openframeworks/ofBook/blob/master/chapters/intro_to_graphics/code/1_ii_a_Single_Rectangle_Brush.sketch

5.1 Brushes with Basic Shapes

5.1.2.3 Glowing Circle Brush: Using Transparency and Color

Unlike what we did with the rectangle brush, we are going to layer colorful, transparent
circles on top of each to create a glowing haze. We will draw a giant transparent circle,
then draw a slightly smaller transparent circle on top of it, then repeat, repeat, repeat.
We can add transparency to ofSetColor(...) with a second parameter, the alpha
channel (e.g.ofSetColor(255, 50)), with a value from 0 (completely transparent) to
255 (completely opaque).

Before we use alpha, we need to enable something called “alpha blending.” Us-
ing transparency costs computing power, so ofEnableAlphaBlending()³³ and
ofDisableAlphaBlending()³⁴ allow us to turn on and off this blending at our
discretion. We need it, so enable it in setup().

Comment out the rectangle brush code inside the if statement that checks if the left
mouse button is pressed. Now we can start working on our circle brush. We will use
the angle, distance, xOffset and yOffset code like before. Our for loop will start
with a large radius and step its value to 0. Add the following:� �
int maxRadius = 100; // Increase for a wider brush
int radiusStepSize = 5; // Decrease for more circles (i.e. a more

opaque brush)
int alpha = 3; // Increase for a more opaque brush
int maxOffsetDistance = 100; // Increase for a larger spread of

circles
for (int radius=maxRadius; radius>0; radius-=radiusStepSize) {

float angle = ofRandom(ofDegToRad(360.0));
float distance = ofRandom(maxOffsetDistance);
float xOffset = cos(angle) * distance;
float yOffset = sin(angle) * distance;
ofSetColor(255, alpha);
ofCircle(ofGetMouseX()+xOffset, ofGetMouseY()+yOffset, radius);

}� �
We end up with something like figure 6, a glowing light except without color. Tired
of living in moody shades of gray? ofSetColor(...) can make use of the Red Blue
Green (RGB) color model³⁵ in addition to the grayscale color model. We specify the
amount (0 to 255) of red, blue and green light respectively, e.g. ofSetColor(255,
0, 0) for opaque red. We can also add alpha, e.g. ofSetColor(0, 0, 255, 10) for
transparent blue. Go ahead and modify the ofSetColor(...) in our circle brush to
use a nice orange: ofSetColor(255, 103, 0, alpha).

³³http://www.openframeworks.cc/documentation/graphics/ofGraphics.html#show_
ofEnableAlphaBlending

³⁴http://www.openframeworks.cc/documentation/graphics/ofGraphics.html#show_
ofDisableAlphaBlending

³⁵http://en.wikipedia.org/wiki/RGB_color_model

77

http://www.openframeworks.cc/documentation/graphics/ofGraphics.html#show_ofEnableAlphaBlending
http://www.openframeworks.cc/documentation/graphics/ofGraphics.html#show_ofEnableAlphaBlending
http://www.openframeworks.cc/documentation/graphics/ofGraphics.html#show_ofDisableAlphaBlending
http://www.openframeworks.cc/documentation/graphics/ofGraphics.html#show_ofDisableAlphaBlending
http://en.wikipedia.org/wiki/RGB_color_model

5 Graphics

Figure 5.6: Figure 6: Results of using the circle glow brush

There’s another way we can use ofSetColor(...). Meet ofColor³⁶, a handy class
for handling colors which allows for fancy color math (among other things). Here are
some examples of defining and modifying colors:� �
ofColor myOrange(255, 132, 0); // Defining an opaque orange color -

specified using RGB
ofColor myBlue(0, 0, 255, 50); // Defining a transparent blue color

- specified using RGBA

// We can access the red, green, blue and alpha channels like this:
ofColor myGreen(0, 0, 255, 255);
cout << "Red␣channel:" << myGreen.r << endl;
cout << "Green␣channel:" << myGreen.g << endl;
cout << "Blue␣channel:" << myGreen.b << endl;
cout << "Alpha␣channel:" << myGreen.a << endl;

// We can also set the red, green, blue and alpha channels like this:
ofColor myYellow;
myYellow.r = 255;
myYellow.b = 0;
myYellow.g = 255;
myYellow.a = 255;

// We can also make use of some predefined colors provided by
openFrameworks:

ofColor myAqua = ofColor::aqua;
ofColor myPurple = ofColor::plum;
// Full list of colors available at:

http://www.openframeworks.cc/documentation/types/ofColor.html� �
If we wanted to make our brush fierier, we would draw using random colors that are
in-between orange and red. ofColor gives us in-betweenness using something called
“linear interpolation³⁷” with a function called getLerped(...)³⁸. getLerped(...)
is a class method of ofColor, which means that if we have an ofColor variable, we

³⁶http://openframeworks.cc/documentation/types/ofColor.html
³⁷http://en.wikipedia.org/wiki/Linear_interpolation
³⁸http://www.openframeworks.cc/documentation/types/ofColor.html#show_getLerped

78

http://openframeworks.cc/documentation/types/ofColor.html
http://en.wikipedia.org/wiki/Linear_interpolation
http://www.openframeworks.cc/documentation/types/ofColor.html#show_getLerped

5.1 Brushes with Basic Shapes

can interpolate like this: myFirstColor.getLerped(mySecondColor, 0.3). (For an
explanation of classes andmethods, see theOOPS! chapter.) We pass in two arguments,
an ofColor and a float value between 0.0 and 1.0. The function returns a new
ofColor that is between the two specified colors, and the float determines how close
the new color is to our original color (here, myFirstColor). We can use this in draw()
like this:� �
ofColor myOrange(255, 132, 0, alpha);
ofColor myRed(255, 6, 0, alpha);
ofColor inBetween = myOrange.getLerped(myRed, ofRandom(1.0));
ofSetColor(inBetween);� �
[Source code for this section³⁹]

[ofSketch file for this section⁴⁰]

5.1.2.4 Star Line Brush: Working with a Linear Map

What about lines? We are going to create a brush that draws lines that radiate out
from the mouse to create something similar to an asterisk or a twinkling star (figure 7).
Comment out the circle brush and add:� �
int numLines = 30;
int minRadius = 25;
int maxRadius = 125;
for (int i=0; i<numLines; i++) {

float angle = ofRandom(ofDegToRad(360.0));
float distance = ofRandom(minRadius, maxRadius);
float xOffset = cos(angle) * distance;
float yOffset = sin(angle) * distance;
float alpha = ofMap(distance, minRadius, maxRadius, 50, 0); //

Make shorter lines more opaque
ofSetColor(255, alpha);
ofLine(ofGetMouseX(), ofGetMouseY(), ofGetMouseX()+xOffset,

ofGetMouseY()+yOffset);
}� �
What have we done with the alpha? We used ofMap(...)⁴¹ to do a linear interpolation,
similar to getLerped(...). ofMap(...) transforms one range of values into a differ-
ent range of values - like taking the “loudness” of a sound recorded on a microphone
and using it to determine the color of a shape drawn on the screen. To get a “twinkle”

³⁹https://github.com/openframeworks/ofBook/tree/master/chapters/intro_to_graphics/code/1_ii_c_
Glowing_Circle_Brush

⁴⁰https://github.com/openframeworks/ofBook/blob/master/chapters/intro_to_graphics/code/1_ii_c_
Glowing_Circle_Brush.sketch

⁴¹http://www.openframeworks.cc/documentation/math/ofMath.html#show_ofMap

79

https://github.com/openframeworks/ofBook/tree/master/chapters/intro_to_graphics/code/1_ii_c_Glowing_Circle_Brush
https://github.com/openframeworks/ofBook/tree/master/chapters/intro_to_graphics/code/1_ii_c_Glowing_Circle_Brush
https://github.com/openframeworks/ofBook/blob/master/chapters/intro_to_graphics/code/1_ii_c_Glowing_Circle_Brush.sketch
https://github.com/openframeworks/ofBook/blob/master/chapters/intro_to_graphics/code/1_ii_c_Glowing_Circle_Brush.sketch
http://www.openframeworks.cc/documentation/math/ofMath.html#show_ofMap

5 Graphics

effect, we want our shortest lines to be the most opaque and our longer lines to be the
most transparent. ofMap(...) takes a value from one range and maps it into another
range like this: ofMap(value, inputMin, inputMax, outputMin, outputMax). We
tell it that distance is a value in-between minRadius and maxRadius and that we want
it mapped so that a distance value of 125 (maxRadius) returns an alpha value of 50 and
a distance value of 25 (minRadius) returns an alpha value of 0.

We can also vary the line width using: ofSetLineWidth(ofRandom(1.0, 5.0)), but
remember that if we change the line width in this brush, we will need go back and set
our line width back to 1.0 in our other brushes.

Figure 5.7: Figure 7: Results from using the line brush

[Source code for this section⁴²]

[ofSketch file for this section⁴³]

5.1.2.5 Fleeing Triangle Brush: Vectors and Rotations

Time for the last brush in section 1: the triangle. We’ll draw a bunch of triangles that
are directed outward from the mouse position (figure 8, left). ofTriangle(...) re-
quires us to specify the three corners of the triangle, which means that we will need to
calculate the rotation of the corners to make the triangle point away from the mouse.
A new class will make that math easier: ofVec2f⁴⁴.

We’ve been defining points by keeping two separate variables: x and y. ofVec2f is a
2D vector, and for our purposes, we can just think of it as a point in 2D space. ofVec2f
allows us to hold both x and y in a single variable (and perform handymath operations):� �
ofVec2f mousePos(ofGetMouseX(), ofGetMouseY()); // Defining a new

ofVec2f

// Access the x and y coordinates like this:
cout << "Mouse␣X:␣" << mousePos.x << endl;

⁴²https://github.com/openframeworks/ofBook/tree/master/chapters/intro_to_graphics/code/1_ii_d_
Star_Line_Brush

⁴³https://github.com/openframeworks/ofBook/blob/master/chapters/intro_to_graphics/code/1_ii_d_
Star_Line_Brush.sketch

⁴⁴http://openframeworks.cc/documentation/math/ofVec2f.html

80

https://github.com/openframeworks/ofBook/tree/master/chapters/intro_to_graphics/code/1_ii_d_Star_Line_Brush
https://github.com/openframeworks/ofBook/tree/master/chapters/intro_to_graphics/code/1_ii_d_Star_Line_Brush
https://github.com/openframeworks/ofBook/blob/master/chapters/intro_to_graphics/code/1_ii_d_Star_Line_Brush.sketch
https://github.com/openframeworks/ofBook/blob/master/chapters/intro_to_graphics/code/1_ii_d_Star_Line_Brush.sketch
http://openframeworks.cc/documentation/math/ofVec2f.html

5.1 Brushes with Basic Shapes

Figure 5.8: Figure 8: Isosceles triangles in a brush, left, and isolated in a diagram, right

cout << "Mouse␣Y:␣" << mousePos.y << endl;

// Or we can modify the coordinates like this:
float xOffset = 10.0;
float yOffset = 30.0;
mousePos.x += xOffset;
mousePos.y += yOffset;

// But we can do what we just did above by adding or subtracting two
vectors directly

ofVec2f offset(10.0, 30.0);
mousePos += offset;� �
Let’s start using it to build the triangle brush. The first step is to draw a triangle (figure
8, right) at the mouse cursor. It will become important later, but we are going to draw
our triangle starting from the mouse cursor and pointing to the right. Comment out
the line brush, and add:� �
ofVec2f mousePos(ofGetMouseX(), ofGetMouseY());

// Define a triangle at the origin (0,0) that points to the right
ofVec2f p1(0, 25.0);
ofVec2f p2(100, 0);
ofVec2f p3(0, -25.0);

// Shift the triangle to the mouse position
p1 += mousePos;
p2 += mousePos;
p3 += mousePos;

ofSetColor(255, 50);
ofTriangle(p1, p2, p3);� �

81

5 Graphics

Run it and see what happens. We can add rotation with the ofVec2f class method
rotate(...)⁴⁵ like this: myPoint.rotate(45.0) where myPoint is rotated around
the origin, (0, 0), by 45.0 degrees. Back to our code, add this right before shifting
the triangle to the mouse position:� �
// Rotate the triangle points around the origin
float rotation = ofRandom(360); // The rotate function uses degrees!
p1.rotate(rotation);
p2.rotate(rotation);
p3.rotate(rotation);� �

Figure 5.9: Figure 9: Results from using the rotating triangle brush

Our brush looks something like figure 8 (left). If we were to move that rotation code
to after we shifted the triangle position, the code wouldn’t work very nicely because
rotate(...) assumes we want to rotate our point around the origin. (Check out the
documentation for an alternate way to use rotate(...) that rotates around an arbi-
trary point.) Last step, let’s integrate our prior approach of drawing multiple shapes
that are offset from the mouse:� �
ofVec2f mousePos(ofGetMouseX(), ofGetMouseY());

int numTriangles = 10;
int minOffset = 5;
int maxOffset = 70;
int alpha = 150;
for (int t=0; t<numTriangles; ++t) {

float offsetDistance = ofRandom(minOffset, maxOffset);

// Define a triangle at the origin (0,0) that points to the
right (code omitted)

// The triangle size is a bit smaller than the last brush - see
the source code

// Rotate the triangle, then shift it to the mouse position
(code omitted)

ofVec2f triangleOffset(offsetDistance, 0.0);
triangleOffset.rotate(rotation);

⁴⁵http://www.openframeworks.cc/documentation/math/ofVec2f.html#show_rotate

82

http://www.openframeworks.cc/documentation/math/ofVec2f.html#show_rotate

5.1 Brushes with Basic Shapes

p1 += mousePos + triangleOffset;
p2 += mousePos + triangleOffset;
p3 += mousePos + triangleOffset;

ofSetColor(255, alpha);
ofTriangle(p1, p2, p3);

}� �
We are now using ofVec2f for our offset. We started with a vector that points right-
ward, the same direction our triangle starts out pointing. When we apply the rotation
to them both, they stay in sync (i.e. both pointing away from the mouse). We can
push them out of sync with: triangleOffset.rotate(rotation+90), and we get a
swirling blob of triangles. After that, we can add some color using ofRandom(...) and
getLerped(...) again (figure 9) or play with fill and line width.

Figure 5.10: Figure 10: Results from using the final triangle brush

[Source code for this section⁴⁶]

[ofSketch file for this section⁴⁷]

Extensions

1. Define some public variables to control brush parameters like transparency,
brushWidth, offsetDistance, numberOfShapes, etc.

2. Use the keyPressed(int key)⁴⁸ function (in .cpp) to control those parameters
at run time (e.g. increasing/decreasing brushWidth with the + and - keys). If you
are using ofSketch, see the next section for how to use that function.

3. Track the mouse position and use the distance it moves between frames to con-
trol those parameters (e.g. fast moving mouse draws a thicker brush).

⁴⁶https://github.com/openframeworks/ofBook/tree/master/chapters/intro_to_graphics/code/1_ii_e_
Triangle_Brush

⁴⁷https://github.com/openframeworks/ofBook/blob/master/chapters/intro_to_graphics/code/1_ii_e_
Triangle_Brush.sketch

⁴⁸http://www.openframeworks.cc/documentation/application/ofBaseApp.html#!show_keyPressed

83

https://github.com/openframeworks/ofBook/tree/master/chapters/intro_to_graphics/code/1_ii_e_Triangle_Brush
https://github.com/openframeworks/ofBook/tree/master/chapters/intro_to_graphics/code/1_ii_e_Triangle_Brush
https://github.com/openframeworks/ofBook/blob/master/chapters/intro_to_graphics/code/1_ii_e_Triangle_Brush.sketch
https://github.com/openframeworks/ofBook/blob/master/chapters/intro_to_graphics/code/1_ii_e_Triangle_Brush.sketch
http://www.openframeworks.cc/documentation/application/ofBaseApp.html#!show_keyPressed

5 Graphics

5.1.2.6 Raster Graphics: Taking a Snapshot

Before we move on, let’s save a snapshot of our canvas. We’ll want to use the
keyPressed(int key)⁴⁹ function. This function is built into your application by
default. Any time a key is pressed, the code you put into this function is called. The
key variable is an integer that represents the key that was pressed.

If you are using project generator, you’ll find keyPressed(...) in your .cpp file. If
you are using ofSketch, you might not see the function, but it is easy to add. See the
ofSketch file⁵⁰ for the last section.

In the keyPressed(...) function, add the following:� �
if (key == 's') {

// It's strange that we can compare the int key to a character
like `s`, right? Well, the super short

// explanation is that characters are represented by numbers in
programming. `s` and 115 are the same

// thing. If you want to know more, look check out the wiki for
ASCII.

glReadBuffer(GL_FRONT); // HACK: only needed on windows, when
using ofSetAutoBackground(false)

ofSaveScreen("savedScreenshot_"+ofGetTimestampString()+".png");
}� �
ofSaveScreen(...)⁵¹ grabs the current screen and saves it to a file inside of our
project’s ./bin/data/ folder with a filename we specify. The timestamp is used to
create a unique filename, allowing us to save multiple screenshots without worrying
about them overriding each other. So press the s key and check out your screenshot!

5.2 Brushes from Freeform Shapes

In the last section, we drew directly onto the screen. We were storing graphics (brush
strokes) as pixels, and therefore working with raster graphics⁵². For this reason, it is
hard to isolate, move or erase a single brush stroke. It also means we can’t re-render
our graphics at a different resolution. In contrast, vector graphics⁵³ store graphics as a
list of geometric objects instead of pixel values. Those objects can be modified (erased,
moved, rescaled, etc.) after we “place” them on our screen.

⁴⁹http://www.openframeworks.cc/documentation/application/ofBaseApp.html#!show_keyPressed
⁵⁰https://github.com/openframeworks/ofBook/blob/master/chapters/intro_to_graphics/code/1_ii_e_

Triangle_Brush.sketch
⁵¹http://www.openframeworks.cc/documentation/utils/ofUtils.html#show_ofSaveScreen
⁵²http://en.wikipedia.org/wiki/Raster_graphics
⁵³http://en.wikipedia.org/wiki/Vector_graphics

84

http://www.openframeworks.cc/documentation/application/ofBaseApp.html#!show_keyPressed
https://github.com/openframeworks/ofBook/blob/master/chapters/intro_to_graphics/code/1_ii_e_Triangle_Brush.sketch
https://github.com/openframeworks/ofBook/blob/master/chapters/intro_to_graphics/code/1_ii_e_Triangle_Brush.sketch
http://www.openframeworks.cc/documentation/utils/ofUtils.html#show_ofSaveScreen
http://en.wikipedia.org/wiki/Raster_graphics
http://en.wikipedia.org/wiki/Vector_graphics

5.2 Brushes from Freeform Shapes

In this section, we are going to make a kind of vector graphics by using custom
(“freeform”) shapes in openFrameworks. We will use structures (ofPolyline and
vector<ofPolyline>) that allow us to store and draw the path that the mouse takes
on the screen. Then we will play with those paths to create brushes that do more than
just trace out the cursor’s movement.

5.2.1 Basic Polylines

Create a new project called “Polylines,” and say hello to ofPolyline⁵⁴. ofPolyline
is a data structure that allows us to store a series of sequential points and then con-
nect them to draw a line. Let’s dive into some code. In your header file, define three
ofPolylines:� �
ofPolyline straightSegmentPolyline;
ofPolyline curvedSegmentPolyline;
ofPolyline closedShapePolyline;� �
We can fill those ofPolylines with points in setup():� �
straightSegmentPolyline.addVertex(100, 100); // Add a new point:

(100, 100)
straightSegmentPolyline.addVertex(150, 150); // Add a new point:

(150, 150)
straightSegmentPolyline.addVertex(200, 100); // etc...
straightSegmentPolyline.addVertex(250, 150);
straightSegmentPolyline.addVertex(300, 100);

curvedSegmentPolyline.curveTo(350, 100); // These curves are
Catmull-Rom splines

curvedSegmentPolyline.curveTo(350, 100); // Necessary Duplicate for
Control Point

curvedSegmentPolyline.curveTo(400, 150);
curvedSegmentPolyline.curveTo(450, 100);
curvedSegmentPolyline.curveTo(500, 150);
curvedSegmentPolyline.curveTo(550, 100);
curvedSegmentPolyline.curveTo(550, 100); // Necessary Duplicate for

Control Point

closedShapePolyline.addVertex(600, 125);
closedShapePolyline.addVertex(700, 100);
closedShapePolyline.addVertex(800, 125);
closedShapePolyline.addVertex(700, 150);
closedShapePolyline.close(); // Connect first and last vertices� �
We can now draw our polylines in the draw() function:

⁵⁴http://www.openframeworks.cc/documentation/graphics/ofPolyline.html

85

http://www.openframeworks.cc/documentation/graphics/ofPolyline.html

5 Graphics

� �
ofBackground(0);
ofSetLineWidth(2.0); // Line widths apply to polylines
ofSetColor(255,100,0);
straightSegmentPolyline.draw(); // This is how we draw polylines
curvedSegmentPolyline.draw(); // Nice and easy, right?
closedShapePolyline.draw();� �
We created three different types of polylines (figure 11). straightSegmentPolyline is
composed of a series points connected with straight lines. curvedSegmentPolyline
uses the same points but connects them with curved lines. The curves that are cre-
ated are Catmull–Rom splines⁵⁵, which use four points to define a curve: two define
the start and end, while two control points determine the curvature. These control
points are the reason why we need to add the first and last vertex twice. Lastly,
closedShapePolyline uses straight line segments that are closed, connecting the
first and last vertices.

Figure 5.11: Figure 11: Examples of polylines - straight, curved and closed straight

The advantage of drawing in this way (versus raster graphics) is that the polylines are
modifiable. We could easily move, add, delete, scale our vertices on the the fly.

[Source code for this section⁵⁶]

[ofSketch file for this section⁵⁷]

Extensions

1. Check out arc(...)⁵⁸, arcNegative(...)⁵⁹ and bezierTo(...)⁶⁰ for other
ways to draw shapes with ofPolyline.

⁵⁵http://en.wikipedia.org/wiki/Centripetal_Catmull%E2%80%93Rom_spline
⁵⁶https://github.com/openframeworks/ofBook/tree/master/chapters/intro_to_graphics/code/2_i_

Basic_Polylines
⁵⁷https://github.com/openframeworks/ofBook/blob/master/chapters/intro_to_graphics/code/2_i_

Basic_Polylines.sketch
⁵⁸http://www.openframeworks.cc/documentation/graphics/ofPolyline.html#show_arc
⁵⁹http://www.openframeworks.cc/documentation/graphics/ofPolyline.html#show_arcNegative
⁶⁰http://www.openframeworks.cc/documentation/graphics/ofPolyline.html#show_bezierTo

86

http://en.wikipedia.org/wiki/Centripetal_Catmull%E2%80%93Rom_spline
https://github.com/openframeworks/ofBook/tree/master/chapters/intro_to_graphics/code/2_i_Basic_Polylines
https://github.com/openframeworks/ofBook/tree/master/chapters/intro_to_graphics/code/2_i_Basic_Polylines
https://github.com/openframeworks/ofBook/blob/master/chapters/intro_to_graphics/code/2_i_Basic_Polylines.sketch
https://github.com/openframeworks/ofBook/blob/master/chapters/intro_to_graphics/code/2_i_Basic_Polylines.sketch
http://www.openframeworks.cc/documentation/graphics/ofPolyline.html#show_arc
http://www.openframeworks.cc/documentation/graphics/ofPolyline.html#show_arcNegative
http://www.openframeworks.cc/documentation/graphics/ofPolyline.html#show_bezierTo

5.2 Brushes from Freeform Shapes

5.2.2 Building a Brush from Polylines

5.2.2.1 Polyline Pen: Tracking the Mouse

Let’s use polylines to draw brush strokes. Create a new project, “PolylineBrush.” When
the left mouse button is held down, we will create an ofPolyline and continually
extend it to the current mouse position. We will use a bool to tell us if the left mouse
button is being held down. If it is being held down, we’ll add the mouse position to the
polyline, but instead of adding every mouse position, we’ll add the mouse positions
where the mouse has moved a distance away from the last point in our polyline.

Let’s move on to the code. Create four variables in the header:� �
ofPolyline currentPolyline;
bool leftMouseButtonPressed;
ofVec2f lastPoint;
float minDistance;� �
Initialize minDistance and currentedAddingPoints in setup():� �
minDistance = 10;
currentlyAddingPoints = false;� �
Now we are going to take advantage of two new functions - mousePressed(int
x, int y, int button)⁶¹ and mouseReleased(int x, int y, int button)⁶².
These are functions that are built into your application by default. They are event
handling functions, so whenever a mouse button is pressed, whatever code you put
into mousePressed(...) is called. It’s important to note that mousePressed(...)
is only called when the mouse button is initially pressed. No matter how long we
hold the mouse button down, the function is still only called once. The same goes for
mouseReleased(...).
The functions have a few variables x, y and button that allow you to know a bit more
about the particularmouse event that just occurred. x and y are the screen coordinates
of the cursor, and button is an int that represents the particular button on the mouse
that was pressed/released. Remember the public constants like OF_MOUSE_BUTTON_
LEFT and OF_MOUSE_BUTTON_RIGHT? To figure out what button is, we’ll compare it
against those constants.

Let’s turn back to the code. If you are using project generator, you’ll find these mouse
functions in your .cpp file. If you are using ofSketch, you might not see these func-
tions, but they are easy to add. See the ofSketch file⁶³ for this section. Inside of
mousePressed(...), we want to start the polyline:

⁶¹http://www.openframeworks.cc/documentation/application/ofBaseApp.html#!show_mousePressed
⁶²http://www.openframeworks.cc/documentation/application/ofBaseApp.html#show_mouseReleased
⁶³https://github.com/openframeworks/ofBook/blob/master/chapters/intro_to_graphics/code/2_ii_a_

Polyline_Pen.sketch

87

http://www.openframeworks.cc/documentation/application/ofBaseApp.html#!show_mousePressed
http://www.openframeworks.cc/documentation/application/ofBaseApp.html#show_mouseReleased
https://github.com/openframeworks/ofBook/blob/master/chapters/intro_to_graphics/code/2_ii_a_Polyline_Pen.sketch
https://github.com/openframeworks/ofBook/blob/master/chapters/intro_to_graphics/code/2_ii_a_Polyline_Pen.sketch

5 Graphics

� �
if (button == OF_MOUSE_BUTTON_LEFT) {

leftMouseButtonPressed = true;
currentPolyline.curveTo(x, y); // Remember that x and y are the

location of the mouse
currentPolyline.curveTo(x, y); // Necessary duplicate for first

control point
lastPoint.set(x, y); // Set the x and y of a ofVec2f in a

single line
}� �
Inside of mouseReleased(...), we want to end the polyline:� �
if (button == OF_MOUSE_BUTTON_LEFT) {

leftMouseButtonPressed = false;
currentPolyline.curveTo(x, y); // Necessary duplicate for last

control point
currentPolyline.clear(); // Erase the vertices, allows us to

start a new brush stroke
}� �
Now let’s move over to the update() function. For ofSketch users, this another default
function that you might not see in your sketch. It is a function that is called once
per frame, and it is intended for doing non-drawing tasks. It’s easy to add - see the
ofSketch file⁶⁴ for this section.

Let’s add points to our polyline in update():� �
if (leftMouseButtonPressed) {

ofVec2f mousePos(ofGetMouseX(), ofGetMouseY());
if (lastPoint.distance(mousePos) >= minDistance) {

// a.distance(b) calculates the Euclidean distance between
point a and b. It's

// the straight line distance between the points.
currentPolyline.curveTo(mousePos); // Here we are using an

ofVec2f with curveTo(...)
lastPoint = mousePos;

}
}� �
Note that this only adds points when themouse has moved a certain threshold amount
(minDistance) away from the last point we added to the polyline. This uses the
distance(...)⁶⁵ method of ofVec2f.
All that is left is to add code to draw the polyline in draw(), and we’ve got a basic curved
polyline drawing program. But we don’t have the ability to save multiple polylines, so

⁶⁴https://github.com/openframeworks/ofBook/blob/master/chapters/intro_to_graphics/code/2_ii_a_
Polyline_Pen.sketch

⁶⁵http://openframeworks.cc/documentation/math/ofVec2f.html#show_distance

88

https://github.com/openframeworks/ofBook/blob/master/chapters/intro_to_graphics/code/2_ii_a_Polyline_Pen.sketch
https://github.com/openframeworks/ofBook/blob/master/chapters/intro_to_graphics/code/2_ii_a_Polyline_Pen.sketch
http://openframeworks.cc/documentation/math/ofVec2f.html#show_distance

5.2 Brushes from Freeform Shapes

we have something similar to an Etch A Sketch. We can only draw a single, continuous
line. In order to be able to draw multiple lines that don’t have to be connected to each
other, we will turn to something called a vector. This isn’t the same kind of vector that
we talked about earlier in the context of of2Vecf. If you haven’t seen vectors before,
check out the stl::vector basics tutorial⁶⁶ on the site.

Define vector <ofPolyline> polylines in the header. We will use it to save
our polyline brush strokes. When we finish a stroke, we want to add the poly-
line to our vector. So in the if statement inside of mouseReleased(...), before
currentPolyline.clear(), add polylines.push_back(currentPolyline). Then
we can draw the polylines like this:� �
ofBackground(0);
ofSetColor(255); // White color for saved polylines
for (int i=0; i<polylines.size(); i++) {

ofPolyline polyline = polylines[i];
polyline.draw();

}
ofSetColor(255,100,0); // Orange color for active polyline
currentPolyline.draw();� �
And we have a simple pen-like brush that tracks the mouse, and we can draw a dopey
smiley face (figure 12).

Figure 5.12: Figure 12: Drawing a smilie with the polyline brush

[Source code for this section⁶⁷]

[ofSketch file for this section⁶⁸]

Extensions

1. Add color!
2. Explore ofBeginSaveScreenAsPDF(...)⁶⁹ and ofEndSaveScreenAsPDF(...)⁷⁰

⁶⁶http://openframeworks.cc/tutorials/c++%20concepts/001_stl_vectors_basic.html
⁶⁷https://github.com/openframeworks/ofBook/tree/master/chapters/intro_to_graphics/code/2_ii_a_

Polyline_Pen
⁶⁸https://github.com/openframeworks/ofBook/blob/master/chapters/intro_to_graphics/code/2_ii_a_

Polyline_Pen.sketch
⁶⁹http://openframeworks.cc/documentation/graphics/ofGraphics.html#!show_

ofBeginSaveScreenAsPDF
⁷⁰http://openframeworks.cc/documentation/graphics/ofGraphics.html#!show_ofEndSaveScreenAsPDF

89

http://openframeworks.cc/tutorials/c++%20concepts/001_stl_vectors_basic.html
https://github.com/openframeworks/ofBook/tree/master/chapters/intro_to_graphics/code/2_ii_a_Polyline_Pen
https://github.com/openframeworks/ofBook/tree/master/chapters/intro_to_graphics/code/2_ii_a_Polyline_Pen
https://github.com/openframeworks/ofBook/blob/master/chapters/intro_to_graphics/code/2_ii_a_Polyline_Pen.sketch
https://github.com/openframeworks/ofBook/blob/master/chapters/intro_to_graphics/code/2_ii_a_Polyline_Pen.sketch
http://openframeworks.cc/documentation/graphics/ofGraphics.html#!show_ofBeginSaveScreenAsPDF
http://openframeworks.cc/documentation/graphics/ofGraphics.html#!show_ofBeginSaveScreenAsPDF
http://openframeworks.cc/documentation/graphics/ofGraphics.html#!show_ofEndSaveScreenAsPDF

5 Graphics

to save your work into a vector file format.
3. Try using the keyPressed(...) function in your source file to add an undo fea-

ture that deletes the most recent brush stroke.
4. Try restructuring the code to allow for a redo feature as well.

5.2.2.2 Polyline Brushes: Points, Normals and Tangents

Since we have the basic drawing in place, now we play with how we are rendering our
polylines. We will draw points, normals and tangents. We’ll talk about what normals
and tangents in a little bit. First, let’s draw points (circles) at the vertices in our poly-
lines. Inside the for loop in draw() (after polyline.draw()), add this:� �
vector<ofVec3f> vertices = polyline.getVertices();
for (int vertexIndex=0; vertexIndex<vertices.size(); ++vertexIndex) {

ofVec3f vertex = vertices[vertexIndex]; // ofVec3f is like
ofVec2f, but with a third dimension, z

ofCircle(vertex, 5);
}� �
getVertices()⁷¹ returns a vector of ofVec3f objects that represent the vertices of
our polyline. This is basically what an ofPolyline is - an ordered set of ofVec3f
objects (with some extra math). We can loop through the indices of the vector to pull
out the individual vertex locations, and use them to draw circles.
What happens when we run it? Our white lines look thicker. That’s because our poly-
line is jam-packed with vertices! Every time we call the curveTo(...) method, we
create 20 extra vertices (by default). These help make a smooth-looking curve. We can
adjust how many vertices are added with an optional parameter, curveResolution,
in curveTo(...). We don’t need that many vertices, but instead of lowering the
curveResolution, we can make use of simplify(...)⁷².
simplify(...) is a method that will remove “duplicate” points from our polyline. We
pass a single argument into it: tolerance, a value between 0.0 and 1.0. The tolerance
describes how dis-similar points must be in order to be considered ‘unique’ enough to
not be deleted. The higher the tolerance, the more points will be removed. So right
before we save our polyline by putting it into our polylines vector, we can simplify
it. Inside of the if statement within mouseReleased(...) (before polylines.push_
back(currentPolyline)), add: currentPolyline.simplify(0.75). Now we should
see something like figure 13 (left).
We can also sample points along the polyline using getPointAtPercent(...)⁷³,
which takes a float between 0.0 and 1.0 and returns a ofVec3f. Inside the draw()
function, comment out the code that draws a circle at each vertex. Below that, add:
⁷¹http://www.openframeworks.cc/documentation/graphics/ofPolyline.html#show_getVertices
⁷²http://openframeworks.cc/documentation/graphics/ofPolyline.html#show_simplify
⁷³http://openframeworks.cc/documentation/graphics/ofPolyline.html#show_getPointAtPercent

90

http://www.openframeworks.cc/documentation/graphics/ofPolyline.html#show_getVertices
http://openframeworks.cc/documentation/graphics/ofPolyline.html#show_simplify
http://openframeworks.cc/documentation/graphics/ofPolyline.html#show_getPointAtPercent

5.2 Brushes from Freeform Shapes

Figure 5.13: Figure 13: Drawing circles at the vertices of a polyline, without and with
resampling points evenly

� �
for (int p=0; p<100; p+=10) {

ofVec3f point = polyline.getPointAtPercent(p/100.0); //
Returns a point at a percentage along the polyline

ofCircle(point, 5);
}� �

Now we have evenly spaced points (figure 13, right). Let’s try creating a brush stroke
where the thickness of the line changes. To do this we need to use a normal vector⁷⁴.
Figure 14 shows normals drawn over some polylines - they points in the opposite (per-
pendicular) direction to the polyline. Imagine drawing a normal at every point along
a polyline, like figure 15. That is one way to add “thickness” to our brush. We can
comment out our circle drawing code in draw(), and add these lines of code instead:� �

vector<ofVec3f> vertices = polyline.getVertices();
float normalLength = 50;
for (int vertexIndex=0; vertexIndex<vertices.size();

++vertexIndex) {
ofVec3f vertex = vertices[vertexIndex]; // Get the vertex
ofVec3f normal = polyline.getNormalAtIndex(vertexIndex) *

normalLength; // Scale the normal
ofLine(vertex-normal/2, vertex+normal/2); // Center the

scaled normal around the vertex
}� �

We are getting all of the vertices in our ofPolyline. But here, we are also using
getNormalAtIndex⁷⁵ which takes an index and returns an ofVec3f that represents the
normal vector for the vertex at that index. We take that normal, scale it and then display
it centered around the vertex. So, we have something like figure 14 (left), but we can
also sample normals, using the function getNormalAtIndexInterpolated(...)⁷⁶.
So let’s comment out the code we just wrote, and try sampling our normals evenly
along the polyline:� �
float numPoints = polyline.size();
float normalLength = 50;

⁷⁴http://en.wikipedia.org/w/index.php?title=Normal_vector
⁷⁵http://www.openframeworks.cc/documentation/graphics/ofPolyline.html#show_getNormalAtIndex
⁷⁶http://www.openframeworks.cc/documentation/graphics/ofPolyline.html#show_

getNormalAtIndexInterpolated

91

http://en.wikipedia.org/w/index.php?title=Normal_vector
http://www.openframeworks.cc/documentation/graphics/ofPolyline.html#show_getNormalAtIndex
http://www.openframeworks.cc/documentation/graphics/ofPolyline.html#show_getNormalAtIndexInterpolated
http://www.openframeworks.cc/documentation/graphics/ofPolyline.html#show_getNormalAtIndexInterpolated

5 Graphics

Figure 5.14: Figure 14: Drawing normals at the vertices of a polyline, without and with
resampling points evenly

for (int p=0; p<100; p+=10) {
ofVec3f point = polyline.getPointAtPercent(p/100.0);
float floatIndex = p/100.0 * (numPoints-1);
ofVec3f normal =

polyline.getNormalAtIndexInterpolated(floatIndex) *
normalLength;

ofLine(point-normal/2, point+normal/2);
}� �
We can get an evenly spaced point by using percents again, but getNormalAtIndexInterpolated(...)
is asking for an index. Specifically, it is asking for a floatIndex which means that we
can pass in 1.5 and the polyline will return a normal that lives halfway between the
point at index 1 and halfway between the point at index 2. So we need to convert our
percent, p/100.0, to a floatIndex. All we need to do is to multiply the percent by the
last index in our polyline (which we can get from subtracting one from the size()⁷⁷
which tells us how many vertices are in our polyline), resulting in figure 14 (right).

Now we can pump up the number of normals in our drawing. Let’s change our loop
increment from p+=10 to p+=1, change our loop condition from p<100 to p<500 and
change our p/100.0 lines of code to p/500.0. We might also want to use a transparent
white for drawing these normals, so let’s add ofSetColor(255,100) right before our
loop. We will end up being able to draw ribbon lines, like figure 15.

Figure 5.15: Figure 15: Drawing many many normals to fill out the polyline

We’ve just added some thickness to our polylines. Now let’s have a quick aside about
tangents, the “opposite” of normals. These wonderful things are perpendicular to the

⁷⁷http://www.openframeworks.cc/documentation/graphics/ofPolyline.html#show_size

92

http://www.openframeworks.cc/documentation/graphics/ofPolyline.html#show_size

5.2 Brushes from Freeform Shapes

normals that we just drew. So if we drew tangents along a perfectly straight line we
wouldn’t really see anything. The fun part comes when we draw tangents on a curved
line, so let’s see what that looks like. Same drill as before. Comment out the last code
and add in the following:� �
vector<ofVec3f> vertices = polyline.getVertices();
float tangentLength = 80;
for (int vertexIndex=0; vertexIndex<vertices.size(); ++vertexIndex) {

ofVec3f vertex = vertices[vertexIndex];
ofVec3f tangent = polyline.getTangentAtIndex(vertexIndex) *

tangentLength;
ofLine(vertex-tangent/2, vertex+tangent/2);

}� �
This should look very familiar except for getTangentAtIndex(...)⁷⁸ which is the
equivalent of getNormalAtIndex(...) but for tangents. Not much happens for
straight and slightly curved lines, however, sharply curved lines reveal the tangents
figure 16 (left).

Figure 5.16: Figure 16: Drawing tangents at vertices of polylines

I’m sure you can guess what’s next… drawing a whole bunch of tangents at evenly
spaced locations (figure 16, right)! It’s more fun that it sounds. getTangentAtIndexInterpolated(...)⁷⁹
works like getNormalAtIndexInterpolated(...). Same drill, comment out the last
code, and add the following:� �
ofSetColor(255, 50);
float numPoints = polyline.size();
float tangentLength = 300;
for (int p=0; p<500; p+=1) {

ofVec3f point = polyline.getPointAtPercent(p/500.0);
float floatIndex = p/500.0 * (numPoints-1);
ofVec3f tangent =

polyline.getTangentAtIndexInterpolated(floatIndex) *
tangentLength;

ofLine(point-tangent/2, point+tangent/2);
}� �
⁷⁸http://www.openframeworks.cc/documentation/graphics/ofPolyline.html#show_getTangentAtIndex
⁷⁹http://www.openframeworks.cc/documentation/graphics/ofPolyline.html#show_

getTangentAtIndexInterpolated

93

http://www.openframeworks.cc/documentation/graphics/ofPolyline.html#show_getTangentAtIndex
http://www.openframeworks.cc/documentation/graphics/ofPolyline.html#show_getTangentAtIndexInterpolated
http://www.openframeworks.cc/documentation/graphics/ofPolyline.html#show_getTangentAtIndexInterpolated

5 Graphics

[Source code for this section⁸⁰]

[ofSketch file for this section⁸¹]

Extensions

1. Try drawing shapes other than ofLine(...) and ofCircle(...) along your poly-
lines. You could use your brush code from section 1.

2. The density of tangents or normals drawn is dependent on the length of the brush
stroke. Try making it independent (hint: you may need to adjust your loop and
use getPerimeter() to calculate the length).

3. Check out how to draw polygons using ofPath and try drawing a brush stroke
that is a giant, closed shape.

5.2.2.3 Vector Graphics: Taking a Snapshot (Part 2)

Remember how we saved our drawings that we made with the basic shape brushes
by doing a screen capture? Well, we can also save drawings as a PDF. A PDF stores
the graphics as a series of geometric objects rather than as a series of pixel values.
So, if we render out our polylines as a PDF, we can open it in a vector graphics editor
(like Inkscape⁸² or Adobe Illustrator) and modify our polylines in all sorts of ways. For
example, see figure 17 where I colored and blurred the polylines to create a glowing
effect.

Once we have a PDF, we could also use it to blow up our polyines to create a massive,
high resolution print.

To do any of this, we need to use ofBeginSaveScreenAsPDF(...)⁸³ and ofEndSaveScreenAsPDF()⁸⁴.
When we call ofBeginSaveScreenAsPDF(...), any subsequent drawing commands
will output to a PDF instead of being drawn to the screen. ofBeginSaveScreenAsPDF(...)
takes one required argument, a string that contains the desired filename for the PDF.
(The PDF will be saved into ./bin/data/ unless you specify an alternate path). When
we call ofEndSaveScreenAsPDF(), the PDF is saved and drawing commands begin
outputting back to the screen.

Let’s use the polyline brush code from the last section to save a PDF. The
way we saved a screenshot previously was to put ofSaveScreen() inside of
keyPressed(...). We can’t do that here because ofBeginSaveScreenAsPDF(...)

⁸⁰https://github.com/openframeworks/ofBook/tree/master/chapters/intro_to_graphics/code/2_ii_b_
Polyline_Brushes

⁸¹https://github.com/openframeworks/ofBook/blob/master/chapters/intro_to_graphics/code/2_ii_b_
Polyline_Brushes.sketch

⁸²http://www.inkscape.org/en/
⁸³http://www.openframeworks.cc/documentation/graphics/ofGraphics.html#!show_

ofBeginSaveScreenAsPDF
⁸⁴http://www.openframeworks.cc/documentation/graphics/ofGraphics.html#show_

ofEndSaveScreenAsPDF

94

https://github.com/openframeworks/ofBook/tree/master/chapters/intro_to_graphics/code/2_ii_b_Polyline_Brushes
https://github.com/openframeworks/ofBook/tree/master/chapters/intro_to_graphics/code/2_ii_b_Polyline_Brushes
https://github.com/openframeworks/ofBook/blob/master/chapters/intro_to_graphics/code/2_ii_b_Polyline_Brushes.sketch
https://github.com/openframeworks/ofBook/blob/master/chapters/intro_to_graphics/code/2_ii_b_Polyline_Brushes.sketch
http://www.inkscape.org/en/
http://www.openframeworks.cc/documentation/graphics/ofGraphics.html#!show_ofBeginSaveScreenAsPDF
http://www.openframeworks.cc/documentation/graphics/ofGraphics.html#!show_ofBeginSaveScreenAsPDF
http://www.openframeworks.cc/documentation/graphics/ofGraphics.html#show_ofEndSaveScreenAsPDF
http://www.openframeworks.cc/documentation/graphics/ofGraphics.html#show_ofEndSaveScreenAsPDF

5.2 Brushes from Freeform Shapes

and ofEndSaveScreenAsPDF() need to be before and after (respectively) the drawing
code. So we’ll make use of a bool variable. Add bool isSavingPDF to the header (.h)
file, and then modify your source code (.cpp) to look like this:� �
void ofApp::setup(){

// Setup code omitted for clarity...

isSavingPDF = false;
}

void ofApp::draw(){
// If isSavingPDF is true (i.e. the s key has been pressed), then
// anything in between ofBeginSaveScreenAsPDF(...) and

ofEndSaveScreenAsPDF()
// is saved to the file.
if (isSavingPDF) {

ofBeginSaveScreenAsPDF("savedScreenshot_
"+ofGetTimestampString()+".pdf");

}

// Drawing code omitted for clarity...

// Finish saving the PDF and reset the isSavingPDF flag to false
// Ending the PDF tells openFrameworks to resume drawing to the

screen.
if (isSavingPDF) {

ofEndSaveScreenAsPDF();
isSavingPDF = false;

}
}

void ofApp::keyPressed(int key){
if (key == 's') {

// isSavingPDF is a flag that lets us know whether or not
save a PDF

isSavingPDF = true;
}

}� �
[Source code for this section⁸⁵]

[ofSketch file for this section⁸⁶]

⁸⁵https://github.com/openframeworks/ofBook/tree/master/chapters/intro_to_graphics/code/2_ii_c_
Save_Vector_Graphics

⁸⁶https://github.com/openframeworks/ofBook/blob/master/chapters/intro_to_graphics/code/2_ii_c_
Save_Vector_Graphics.sketch

95

https://github.com/openframeworks/ofBook/tree/master/chapters/intro_to_graphics/code/2_ii_c_Save_Vector_Graphics
https://github.com/openframeworks/ofBook/tree/master/chapters/intro_to_graphics/code/2_ii_c_Save_Vector_Graphics
https://github.com/openframeworks/ofBook/blob/master/chapters/intro_to_graphics/code/2_ii_c_Save_Vector_Graphics.sketch
https://github.com/openframeworks/ofBook/blob/master/chapters/intro_to_graphics/code/2_ii_c_Save_Vector_Graphics.sketch

5 Graphics

Figure 5.17: Figure 17: Editing a saved PDF from openFrameworks in Illustrator

5.3 Moving The World

We’ve been making brushes for a long time, so let’s move onto something different:
moving the world. By the world, I really just mean the coordinate system (though it
sounds more exciting the other way).

Whenever we call a drawing function, like ofRect(...) for example, we pass in an x
and y location at which we want our shape to be drawn. We know (0,0) to be the upper
left pixel of our window, that the positive x direction is rightward across our window
and that positive y direction is downward along our window (recall figure 1). We are
about to violate this established knowledge.

Imagine that we have a piece of graphing paper in front of us. How would we draw
a black rectangle at (5, 10) that is 5 units wide and 2 units high? We would probably
grab a black pen, move our hands to (5, 10) on our graphing paper, and start filling
in boxes? Pretty normal, but we could have also have kept our pen hand stationary,
moved our paper 5 units left and 10 units down and then started filling in boxes. Seems
odd, right? This is actually a powerful concept. With openFrameworks, we can move
our coordinate system like this using ofTranslate(...), but we can also rotate and
scale with ofRotate(...) and ofScale(...). We will start with translating to cover
our screen with stick figures, and then we will rotate and scale to create spiraling
rectangles.

96

5.3 Moving The World

5.3.1 Translating: Stick Family

ofTranslate⁸⁷ first. ofTranslate(...) takes an x, a y and an optional z parameter,
and then shifts the coordinate system by those specified values. Why do this? Create
a new project and add this to our draw() function of our source file (.cpp):� �
// Draw the stick figure family
ofCircle(30, 30, 30);
ofRect(5, 70, 50, 100);
ofCircle(95, 30, 30);
ofRect(70, 70, 50, 100);
ofCircle(45, 90, 15);
ofRect(30, 110, 30, 60);
ofCircle(80, 90, 15);
ofRect(65, 110, 30, 60);� �
Draw a white background and color the shapes, and we end up with something like
figure 18 (left).

Figure 5.18: Figure 18: Arranging a little stick figure family

What if, after figuring out where to put our shapes, we needed to draw them at a differ-
ent spot on the screen, or to draw a row of copies? We could change all the positions
manually, or we could use ofTranslate(...) to move our coordinate system and
leave the positions alone:� �
// Loop and draw a row
for (int cols=0; cols<10; cols++) {

// Draw the stick figure family (code omitted)

ofTranslate(150, 0);
}� �
So our original shapes are wrapped it in a loop with ofTranslate(150, 0), which
shifts our coordinate system to the left 150 pixels each time it executes. And we’ll end
up with figure 18 (second from left). Or something close to that, I randomized the colors
in the figure - every family is different, right?

If we wanted to create a grid of families, we will run into problems. After the first row
of families, our coordinate system will have been moved quite far to the left. If we

⁸⁷http://www.openframeworks.cc/documentation/graphics/ofGraphics.html#show_ofTranslate

97

http://www.openframeworks.cc/documentation/graphics/ofGraphics.html#show_ofTranslate

5 Graphics

move our coordinate system up in order to start drawing our second row, we will end
up drawing off the screen. It would look like figure 18 (third from left).

So what we need is to reset the coordinate system using ofPushMatrix()⁸⁸ and
ofPopMatrix()⁸⁹. ofPushMatrix() saves the current coordinate system and
ofPopMatrix() returns us to the last saved coordinate system. These functions
have the word matrix in them because openFrameworks stores all of our combined
rotations, translations and scalings in a single matrix. So we can use these new
functions like this:� �

for (int rows=0; rows<10; rows++) {
ofPushMatrix(); // Save the coordinate system before we

shift it horizontally

// It is often helpful to indent any code in-between
push and pop matrix for readability

// Loop and draw a row (code omitted)

ofPopMatrix(); // Return to the coordinate system before we
shifted it horizontally

ofTranslate(0, 200);
}� �

And we should end up with a grid. See figure 18, right. (I used ofScale to jam many
in one image.) Or if you hate grids, we can make a mess of a crowd using random
rotations and translations, figure 19.

Figure 5.19: Figure 19: A crowd

[Source code for this section⁹⁰]

[ofSketch file for this section⁹¹]

⁸⁸http://www.openframeworks.cc/documentation/graphics/ofGraphics.html#show_ofPushMatrix
⁸⁹http://www.openframeworks.cc/documentation/graphics/ofGraphics.html#show_ofPopMatrix
⁹⁰https://github.com/openframeworks/ofBook/tree/master/chapters/intro_to_graphics/code/3_i_

Translating_Stick_Family
⁹¹https://github.com/openframeworks/ofBook/blob/master/chapters/intro_to_graphics/code/3_i_

Translating_Stick_Family.sketch

98

http://www.openframeworks.cc/documentation/graphics/ofGraphics.html#show_ofPushMatrix
http://www.openframeworks.cc/documentation/graphics/ofGraphics.html#show_ofPopMatrix
https://github.com/openframeworks/ofBook/tree/master/chapters/intro_to_graphics/code/3_i_Translating_Stick_Family
https://github.com/openframeworks/ofBook/tree/master/chapters/intro_to_graphics/code/3_i_Translating_Stick_Family
https://github.com/openframeworks/ofBook/blob/master/chapters/intro_to_graphics/code/3_i_Translating_Stick_Family.sketch
https://github.com/openframeworks/ofBook/blob/master/chapters/intro_to_graphics/code/3_i_Translating_Stick_Family.sketch

5.3 Moving The World

5.3.2 Rotating and Scaling: Spiraling Rectangles

Onto ofScale(...) and ofRotate(...)! Let’s create a new project where rotating
and scaling rectangles to get something like figure 20.

Figure 5.20: Figure 20: Drawing a series of spiraling rectangles

Before knowing about ofRotate(...), we couldn’t have drawn a rotated rectangle
with ofRect(...). ofRotate(...)⁹² takes an angle (in degrees) and rotates our co-
ordinate system around the current origin. Let’s attempt a rotated rectangle:� �
ofBackground(255);
ofPushMatrix();

// Original rectangle in blue
ofSetColor(0, 0, 255);
ofRect(500, 200, 200, 200);

// Rotated rectangle in red
ofRotate(45);
ofSetColor(255, 0, 0);
ofRect(500, 200, 200, 200);

ofPopMatrix();� �
Hmm, not quite right (figure 21, left). ofRotate(...) rotates around the current ori-
gin, the top left corner of the screen. To rotate in place, we need ofTranslate(...)
to move the origin to our rectangle before we rotate. Add ofTranslate(500, 200)
before rotating (figure 21, second from left). Now we are rotating around the upper left
corner of the rectangle. The easiest way to rotate the rectangle around its center is
to use ofSetRectMode(OF_RECTMODE_CENTER) draw the center at (500, 200). Do that,
and we finally get figure 21, third from left.

Push, translate, rotate, pop - no problem. Only thing left is ofScale(...)⁹³. It takes
two arguments: the desired scaling in x and y directions (and an optional z scaling).
Applying scaling to our rectangles:� �
ofSetRectMode(OF_RECTMODE_CENTER);
ofBackground(255);

⁹²http://www.openframeworks.cc/documentation/graphics/ofGraphics.html#show_ofRotate
⁹³http://www.openframeworks.cc/documentation/graphics/ofGraphics.html#show_ofScale

99

http://www.openframeworks.cc/documentation/graphics/ofGraphics.html#show_ofRotate
http://www.openframeworks.cc/documentation/graphics/ofGraphics.html#show_ofScale

5 Graphics

Figure 5.21: Figure 21: Steps along the way to rotating and scaling a rectangle in place

ofPushMatrix();
// Original rectangle in blue
ofSetColor(0, 0, 255);
ofRect(500, 200, 200, 200);

// Scaled down rectangle in red
ofTranslate(500, 200);
ofScale(0.5, 0.5); // We are only working in x and y, so let's

leave the z scale at its default (1.0)
ofSetColor(255, 0, 0);
ofRect(0, 0, 200, 200);

ofPopMatrix();� �
We’ll run into the same issues that we ran into with rotation and centering. The solution
is the same - translating before scaling and using OF_RECTMODE_CENTER. Example
scaling shown in figure 21 (right).
Now we can make trippy rectangles. Start a new project. The idea is really simple, we
are going to draw a rectangle at the center of the screen, scale, rotate, draw a rectangle,
repeat and repeat. Add the following to our draw() function:� �
ofBackground(255);

ofSetRectMode(OF_RECTMODE_CENTER);
ofSetColor(0);
ofNoFill();
ofPushMatrix();

ofTranslate(ofGetWidth()/2, ofGetHeight()/2); // Translate to
the center of the screen

for (int i=0; i<100; i++) {
ofScale(1.1, 1.1);
ofRotate(5);
ofRect(0, 0, 50, 50);

}
ofPopMatrix();� �
That’s it (figure 20). We can play with the scaling, rotation, size of the rectangle, etc.
Three lines of code will add some life to our rectangles and cause them to coil and
uncoil over time. Put these in the place of ofRotate(5):

100

5.3 Moving The World

� �
// Noise is a topic that deserves a section in a book unto itself
// Check out Section 1.6 of "The Nature of Code" for a good

explanation
// http://natureofcode.com/book/introduction/
float time = ofGetElapsedTimef();
float timeScale = 0.5;
float noise = ofSignedNoise(time * timeScale) * 20.0;
ofRotate(noise);� �
Next, we can create a visual smear (“trail effect”) as it rotates if we will turn off the
background automatic clearing and partially erase the screen before drawing again.
To do this add a few things to setup():� �
ofSetBackgroundAuto(false);
ofEnableAlphaBlending(); // Remember if we are using transparency,

we need to let openFrameworks know
ofBackground(255);� �
Delete ofBackground(255) from our draw() function. Then, add this to the beginning
of our draw() function:� �
float clearAlpha = 100;
ofSetColor(255, clearAlpha);
ofSetRectMode(OF_RECTMODE_CORNER);
ofFill();
ofRect(0, 0, ofGetWidth(), ofGetHeight()); // ofBackground doesn't

work with alpha, so draw a transparent rect� �
Pretty hypnotizing? If we turn up the clearAlpha, we will turn down the smear. If we
turn down the clearAlpha, we will turn up the smear.

Now we’ve got two parameters that drastically change the visual experience of our
spirals, specifically: timeScale of noise and clearAlpha of the trail effect. Instead
of manually tweaking their values in the code, we can use the mouse position to in-
dependently control the values during run time. Horizontal position can adjust the
clearAlpha while vertical position can adjust the timeScale. This type of exploration
of parameter settings is super important (especially when making generative graphics),
and using the mouse is handy if we’ve got one or two parameters to explore.

mouseMoved(int x, int y)⁹⁴ runs anytime the mouse moves (in our app). We can
use it to change our parameters, but we need them to be global first. Delete the
code that defines timeScale and clearAlpha locally in draw() and add them to the
header. Initialize the values in setup() to 100 and 0.5 respectively. Then add these
to mouseMoved(...):

⁹⁴http://openframeworks.cc/documentation/application/ofBaseApp.html#!show_mouseMoved

101

http://openframeworks.cc/documentation/application/ofBaseApp.html#!show_mouseMoved

5 Graphics

� �
clearAlpha = ofMap(x, 0, ofGetWidth(), 0, 255); // clearAlpha goes

from 0 to 255 as the mouse moves from left to right
timeScale = ofMap(y, 0, ofGetHeight(), 0, 1); // timeScale goes

from 0 to 1 as the mouse moves from top to bottom� �
One last extension. We can slowly flip the background and rectangle colors, by adding
this to the top of draw():� �
ofColor darkColor(0,0,0,255); // Opaque black
ofColor lightColor(255,255,255,255); // Opaque white
float time = ofGetElapsedTimef(); // Time in seconds
float percent = ofMap(cos(time/2.0), -1, 1, 0, 1); // Create a

value that oscillates between 0 to 1
ofColor bgColor = darkColor; // Color for the transparent rectangle

we use to clear the screen
bgColor.lerp(lightColor, percent); // This modifies our color "in

place", check out the documentation page
bgColor.a = clearAlpha; // Our initial colors were opaque, but our

rectangle needs to be transparent
ofColor fgColor = lightColor; // Color for the rectangle outlines
fgColor.lerp(darkColor, percent); // Modifies color in place� �
Now use bgColor for the transparent rectangle we draw on the screen and fgColor
for the rectangle outlines to get figure 22.

Figure 5.22: Figure 22: A single frame from animated spiraling rectangles where the
contrast reverses over time

[Source code for this section⁹⁵]

[ofSketch file for this section⁹⁶]

Extensions

1. Pass in a third parameter, z, into ofTranslate(...) and ofScale(...) or rotate
around the x and y axes with of ofRotate(...).

⁹⁵https://github.com/openframeworks/ofBook/tree/master/chapters/intro_to_graphics/code/3_ii_
Rotating_and_Scaling

⁹⁶https://github.com/openframeworks/ofBook/blob/master/chapters/intro_to_graphics/code/3_ii_
Rotating_and_Scaling.sketch

102

https://github.com/openframeworks/ofBook/tree/master/chapters/intro_to_graphics/code/3_ii_Rotating_and_Scaling
https://github.com/openframeworks/ofBook/tree/master/chapters/intro_to_graphics/code/3_ii_Rotating_and_Scaling
https://github.com/openframeworks/ofBook/blob/master/chapters/intro_to_graphics/code/3_ii_Rotating_and_Scaling.sketch
https://github.com/openframeworks/ofBook/blob/master/chapters/intro_to_graphics/code/3_ii_Rotating_and_Scaling.sketch

5.4 Next Steps

2. Capture animated works using an addon called ofxVideoRecorder⁹⁷. If you are
using Windows, like me, that won’t work for you, so try screen capture software
(like fraps) or saving out a series of images using ofSaveScreen(...) and using
them to create a GIF or movie with your preferred tools (photoshop, ffmpeg etc.)

5.4 Next Steps

Congratulations on surviving the chapter :). You covered a lot of ground and (hopefully)
made some fun things along the way - which you should share on the forums⁹⁸!

If you are looking to learn more about graphics in openFrameworks, definitely continue
on to Advanced Graphics chapter to dive into more advanced graphical features. You
can also check out these three tutorials: Basics of Generating Meshes from an Image⁹⁹,
for a gentle introduction to meshes; Basics of OpenGL¹⁰⁰, for a comprehensive look
at graphics that helps explain what is happening under the hood of openFrameworks;
and Introducing Shaders¹⁰¹, for a great way to start programming with your graphical
processing unit (GPU).

⁹⁷https://github.com/timscaffidi/ofxVideoRecorder
⁹⁸http://forum.openframeworks.cc/
⁹⁹http://openframeworks.cc/tutorials/graphics/generativemesh.html
¹⁰⁰http://openframeworks.cc/tutorials/graphics/opengl.html
¹⁰¹http://openframeworks.cc/tutorials/graphics/shaders.html

103

https://github.com/timscaffidi/ofxVideoRecorder
http://forum.openframeworks.cc/
http://openframeworks.cc/tutorials/graphics/generativemesh.html
http://openframeworks.cc/tutorials/graphics/opengl.html
http://openframeworks.cc/tutorials/graphics/shaders.html

6 Ooops! = Object Oriented Programming +
Classes

6.1 Overview

This tutorial is an quick and practical introduction to Object Oriented Programming in
openFrameworks and a how-to guide to build and use your own classes. By the end of
this chapter you should understand how to create your own objects and have a lot of
balls bouncing on your screen!

6.2 What is OOP

Object Oriented Programming is a programming paradigm based on the use of objects
and their interactions. Some terms and definitions used within OOP are listed below:

-A Class defines the characteristics of a thing - the object - and its behaviors; it defines
not only its properties and attributes but also what it can do.

-An Object is an instance of a class.

-The Methods are the objects abilities and how we can call them.

A recurring analogy is to see a Class as a the cookie cutter and the cookies as the
Objects.

Note: please see chapter (Josh Nimoy’s) for amore detailed explanation of Objected
Oriented languages.

6.3 How to build your own Classes (simple Class)

Classes and objects are similar to the concepts of movie clips and instances in Flash
and are also a fundamental part of Java programming. Because like coding, cooking is
fun andwe tend to experiment in the kitchen let’s continue with the classicmetaphor of
a cookie cutter as a class and cookies as the objects. Every class has two files: a header
file, also known as a Declarations file with the termination ‘.h’ and an implementation
file, terminating in ‘.cpp’. A very easy way of knowing what these two files do is to think

105

6 Ooops! = Object Oriented Programming + Classes

of the header file (.h) as a recipe, a list of the main ingredients of your cookie. The
implementation file (.cpp) is what we’re going to do with them, how you mix and work
them to be the perfect cookie! So let’s see how it works:

first of all let’s create the two class files: If you’re using XCODE as your IDE (it stands
for: Integrated Development Environment), select the src folder and left Click (or CTRL
+ click), on the pop menu select ‘New File’ and you’ll be taken to a new window menu,
choose the appropriate platform you’re developping for (OSX or iOS) and select C++
class and finally choose a name (we used ‘ofBall’). You’ll automatically see the two
files in your ‘src’ folder: ofBall.h and ofBall.cpp . Now let’s edit your class header (.h)
file. Feel free to delete all its contents and let’s start from scratch: Declare a class in
the header file (.h). In this case, the file name should be ofBall.h. Folllow the code
below and type into your own ofBall.h file, please note the comments I’ve included to
guide you along.� �
#ifndef _OF_BALL // if this class hasn't been defined, the program

can define it
#define _OF_BALL // by using this if statement you prevent the class

to be called more than once which would confuse the compiler
#include "ofMain.h" // we need to include this to have a reference

to the OpenFrameworks framework
class ofBall {

public: // place public functions or variables declarations here

// methods, equivalent to specific functions of your class
objects

void update(); // update method, used to refresh your objects
properties

void draw(); // draw method, this where you'll do the
object's drawing

// variables
float x; // position
float y;
float speedY; // speed and direction
float speedX;
int dim; // size
ofColor color; // color using ofColor type

ofBall(); // constructor - used to initialize an object, if no
properties are passed the program sets them to the default
value

private: // place private functions or variables declarations
here

}; // don't forget the semicolon!!
#endif� �

106

6.3 How to build your own Classes (simple Class)

We have declared the Ball class header file (the list of ingredients) and now lets get to
the cooking part [KL: I wouldn’t use an arrow symbol within this text.] [RX: KL: do you
mean excluding the point exmples to keep it simple?] to see what these ingredients
can do! Please notice the ‘#include’ tag, this is a way to tell the compiler which file to
include for each implementation file. When the program is compiled these ‘#include’
tags will be replaced by the original file they’re referring to. The ‘ if statement’ (#ifndef)
is a way to prevent the repetition of header files which could easily occur, by using
this expression it helps the compiler to only include the file once and avoid repetition.
Don’t worry about this now, we’ll talk about it later on!

Here’s how you can write the class *.cpp file, the implementation file:

[KL: did the previous chapter talk about how to create a new class in oF? If so, no wor-
ries, but if it didn’t, it’s a good idea to address how to do that, and that the example
below is ofBall.cpp. - see below] [JTN: yes it did but only in the unabridged version -
see below] [RX: added xcode instructions below, anyone up to help with other IDEs?
]� �
#include "ofBall.h"

ofBall::ofBall(){
x = ofRandom(0, ofGetWidth()); // give some random

positioning
y = ofRandom(0, ofGetHeight());

speedX = ofRandom(-1, 1); // and random speed and
direction

speedY = ofRandom(-1, 1);

dim = 20;

color.set(ofRandom(255),ofRandom(255),ofRandom(255)); // one way
of defining digital color is by adddressing its 3 components
individually (Red, Green, Blue) in a value from 0-255, in
this example we're setting each to a random value

}

void ofBall::update(){
if(x < 0){

x = 0;
speedX *= -1;

} else if(x > ofGetWidth()){
x = ofGetWidth();
speedX *= -1;

}

if(y < 0){
y = 0;

107

6 Ooops! = Object Oriented Programming + Classes

speedY *= -1;
} else if(y > ofGetHeight()){

y = ofGetHeight();
speedY *= -1;

}

x+=speedX;
y+=speedY;

}

void ofBall::draw(){
ofSetColor(color);
ofCircle(x, y, dim);

}� �
Now, this is such a simple program that we could have wirtten it inside our OfApp(.h
and .cpp) files and it wouldn;t be senseless to do if we didn;t want to re-use this code.
In there lyes one of the advantages of Object Oriented Programming: re-use: Imagine
we want to create thousands of these balls and how easily the ocde could get messy
and extended, by creating our own class we can later re-create as many objects as
need from it and just call the appropriate methods when needed keeping our code
clean and eficient. In a more pragamatic example think of creating a class for each of
your UI elements (button, slider, etc) and hopw easy it would be to them deploy them
in your program but also to include and re-use them in future programs.
[KL: Explain exactly why we are creating this class outside of ofApp. This and the
explanation below seem kind of rushed and OOP can benefit by using some real life
analogies to demonstrate class relationships.]

6.4 make an Object from your Class

Now that we’ve created a class let’s make the real object! In your testApp.h (header
file) we’ll have to declare a new object and get some free memory for it. But first we
need to include (or give the instructions to do so) your ofBall class in our program. To
do this we need to write:� �
#include "ofBall.h"� �
on the top of your testApp.h file. Then we can finally declare an instance of the class i
our progam:� �
ofBall myBall;� �
Now let’s get that ball bouncing on screen! Go to your project testApp.cpp (implemen-
tation) file. Now that we’ve created the object, we just need to draw it and update its
values by calling its methods. In the update() function, add:

108

6.5 make objects from your Class

� �
myBall.update(); // calling the object's update method� �
and in the draw() function lets add:� �
myBall.draw(); // call the draw method to draw the object� �
Compile and run! By now you must be seeing a bouncing ball on the screen! Great!

6.5 make objects from your Class

By now, you’re probably asking yourself why you went to so much trouble to create a
bouncing ball. You could have done this (and probably have) without using classes. In
fact one of the advantages of using classes is to be able to create multiple individual
objects with the same characteristics. So, let’s do that now! Go back to your ofApp.h
file and create a couple of new objects:� �
ofBall myBall1;
ofBall myBall2;
ofBall myBall3;� �
In the implementation file (ofApp.cpp), call the corresponding methods for each of the
objects

in the ofApp’s update() function:� �
myBall1.update();
myBall2.update();
myBall3.update();� �
and also in the draw() function:� �
myBall1.draw();
myBall2.draw();
myBall3.draw();� �
6.6 make more Objects from your Class

We’ve just created 3 objects but what if we wanted to created 10, 100 or maybe 1000’s
of them?! Hardcoding one by one would be a painful and long process that can be
easily solved by automating the object creation and function calls. Just by using a
couple for loops we’ll make this process simpler and cleaner. Instead of declaring a
list of objects one by one we’ll create an array of objects of type ‘ofBall’. We’ll also

109

6 Ooops! = Object Oriented Programming + Classes

introduce another new element: a constant. Constants are defined after the #includes
as #define CONSTANT_NAME value. This is a way of defining a constant value that won’t
ever change in the program:

[KL: The pseudo code-like explanation above is an effective approach. This is a good
method tousebeforewritingout theofBall class above, too. Also, I’vebeen takingout
words like “just” before steps and simplifying verb tenses for clarity. I’d keep that in
mind as you continuewriting this chapter. Themore concise, the better.] [KL: Restate
which file this is happening in.] in the testApp class header file, where you define the
balls objects also define the constant that we’ll use for the number of objects:� �
#define NBALLS 5� �
we’ll now use the CONSTANT value to define the size of our array of objects:� �
ofBall myBall[NBALLS];� �
back to our implementation file we’ll just need to create an array of objects and call
their methods through ‘for’ loops. in the update() function:� �
for(int i=0; i<NBALLS; i++){

myBall[i].update();
}� �
in the draw() function:� �
for(int i=0; i<NBALLS; i++){

myBall[i].draw();
}� �
6.7 make even more Objects from your Class: properties and

constructors

As we’ve seen, each of the objects has a set of properties defined by its variables (posi-
tion, speed, direction, and dimension). Another advantage of object oriented program-
ming is that the objects created can have different values for each of its properties.
For us to have better control of each object, we can have a constructor that defines
these characteristics and lets us access them. In the ofBall definitions file (*.h) we can
change the constructor to include some of the object’s properties (let’s say position
and dimension):� �
ofBall(float x, float y, int dim);� �
Since we’ve changed the constructor, we’ll need to update the ofBall implementation
(*.cpp) file to reflect these.

110

6.7 make even more Objects from your Class: properties and constructors

� �
ofBall::ofBall(float _x, float _y, int _dim){

x = _x;
y = _y;
dim = _dim;

speedX = ofRandom(-1, 1);
speedY = ofRandom(-1, 1);

}� �
Your ofBall.cpp file should look like this by now:� �
#include "ofBall.h"

ofBall::ofBall(float _x, float _y, int _dim){
x = _x;
y = _y;
dim = _dim;

speedX = ofRandom(-1, 1);
speedY = ofRandom(-1, 1);

color.set(ofRandom(255), ofRandom(255), ofRandom(255));

}

void ofBall::update(){

if(x < 0){
x = 0;
speedX *= -1;

} else if(x > ofGetWidth()){
x = ofGetWidth();

speedX *= -1;
}

if(y < 0){
y = 0;
speedY *= -1;

} else if(y > ofGetHeight()){
y = ofGetHeight();
speedY *= -1;

}

x+=speedX;
y+=speedY;

}

111

6 Ooops! = Object Oriented Programming + Classes

void ofBall::draw(){
ofSetColor(color);
ofCircle(x, y, dim);

}� �
By implementing these changes we’ll also need to create space in memory for these
objects. We’ll do this by creating a pointer (a reference in memory) for each object.
Back to the ofApp.h (definitions) file we’ll declare a new object like this:� �
ofBall *myBall; � �
The star(*) means it will be created in a reserved part of memory just for it, we’ll dy-
namically allocate this instance of the ofBall class.

[KL: specify why we’d make it into a pointer vs not a pointer]

Now in the TestApp.cpp file we will need to create the object in the setup and we’ll
call the object’s methods on the draw() and update() functions in a different way than
before. Instead of using the (.) dot syntax like we have been doing so far, from now on
we’ll use the (->) arrow syntax. Also, we’ll also be creating a new instance way more
explicitily. So, in setup()� �

// x-position, y-position, size
myBall = new ofBall(ofRandom(300,400), ofRandom(200,300),

ofRandom(10,40));� �
As you see it is now possible to directly control the objects properties on its creation.
and now we’ll just need to update and draw it.� �
myBall->update();

myBall->draw();� �
[KL: We’ve changed myBall.update() to myBall->update(). That’s kind of a big deal
and warrants explanation concerning pointers.]

[JTN: no harm in explaining it twice, but i introduced it at the end of my unabridged
chapter https://github.com/openframeworks/ofBook/blob/master/02_cplusplus_basics/unabridged.md#classes
]

6.8 make even more Objects from your Class

In this part of our OOPs! tutorial [KL: I simplified two statements into one for conci-
sion.] we’ll demonstrate an automation process to create objects from our previously
built class. We’ll create more [KL: “We’ll create” works better than “we’ll be creating.”

112

6.9 Make and delete as you wish - using vectors

This is an example of verb tenses I’ve been changing. It’s shorter and clearer.] ob-
jects by using arrays like we did in part 2.1 but this time we’ll have to do some minor
changes:� �
ofBall** myBall; // an array of pointers of type ofBall
int nBalls; //variable for the number of balls� �
When creating an array of objects, instead of creating one pointer, we’ll create an array
of pointers. That’s why we have two ‘stars’ and not one in the declarations(.h) file. We
have created a pointer to an array of pointers. Let’s see how we’ll create and call these
objects in the implementation (.cpp) file:� �
nBalls = 5; // the number of ball objects we want to create

myBall = new ofBall*[nBalls]; // an array of pointers for the objects

for (int i = 0; i < nBalls; i++){
float x = 20+(100*i); // using the value of the counter

variable(i) to differentiate them
float y = 20+(100*i);
int dim = 10+(i*10);

myBall[i] = new ofBall(x,y,dim); // create each object from the
array

}� �
similarly when we want to draw and update the objects we’ve created we’ll need ‘for’
loops to run through the array.� �
for (int i = 0; i < nBalls; i++){

myBall[i]->update();
}

for (int i = 0; i < nBalls; i++){
myBall[i]->draw();

}� �
[KL: Great tutorial so far. The organization works well. I’m eager to see the rest. The
main thing so far would be focusing on concision in your writing.]

6.9 Make and delete as you wish - using vectors

In this part we’ll look into more dynamic ways of creating and destroying objects from
our class. Vectors are special arrays that don;t need a pre-fixed number of elements,

113

6 Ooops! = Object Oriented Programming + Classes

that’s their magic: vectors are elastic! note: You’ll be hearing baout two different types
of vectors throughout this book. Please don’t confuse stl::vectors (the elastic arrays
type we’re talking about) with the math vectors (forces).

Back to our beloved testApp.h file, let’s define a vector of ofBall objects by typing:� �
vector <ofBall*> myBall;� �
In this expression we’re creating a type (vector) of type (ofBall pointers) and naming it
myBall. Now, let’s head to our (.cpp) and start cooking! Ignore the setup, update and
draw methods for now, let’s jump to� �
void testApp::mouseDragged(int x, int y, int button){

}� �
In this method we’re listening to the dragging activity of your mouse or trackpad and
we’ll use this simplicity to create interaction! So let’s just create some code to create
ofBalls and add them to our porgram when we drag the mouse.� �
void testApp::mouseDragged(int x, int y, int button){

ofBall *tempBall;
tempBall = new ofBall(x,y, ofRandom(10,40));
myBall.push_back(tempBall);

}� �
A few new things in our code, first we declare a temporary object pointer, we them
create it and assign ‘x’ and ‘y’ mouse Coordinates to it’s contructor variables. We later
use this temporary object as a shortcut to add ofBall objects to our vector. Back to our
Update and Draw methids we can add the needed ‘for loops’ to iterate over the objects
in the vector to update and draw them liek we would do with arrays. This time though
we didn’t declare a variable that stores the maximum number of objects but instead
we call a method that vectors have that allwos us to know their size. See code below
for Update:� �
for (int i = 0 ; i<myBall.size(); i++) {

myBall[i]->update();
}� �

and for Draw:� �
for (int i = 0 ; i<myBall.size(); i++) {

myBall[i]->draw();
}� �
Now let’s also implement a way to delete them before we have way too many ofBalls:
On the testApp::MousePressed Call we will loop though our vector and check the dis-
tance between the coordinates of the mouse with the ofBall position, if this distance

114

6.10 Quick intro to polymorphism (inheritance)

is smaller than the ofBall dimension then, we know that we’re clicking inside it, we can
delete it. Because we’re using the vecotr.erase method we need to use an iterator (my-
Ball.begin()), a shortcut that references to the first element of the vector as a starting
point to access the vector element we really want to erase (‘ i’).� �
for (int i =0; i < myBall.size(); i++) {

float distance = ofDist(x,y, myBall[i]->x, myBall[i]->y); // a
method OF give us to check the distance between two
coordinates

if (distance < myBall[i]->dim) {
myBall.erase(myBall.begin()+i); // we need to use an

iterator/ reference to the vector position we want to
delete

}
}� �
To learn more about stl::vector check xxx chapter or this online shory tutorial :
http://www.openframeworks.cc/tutorials/c++%20concepts/001_stl_vectors_basic.html

6.10 Quick intro to polymorphism (inheritance)

You’re now discovering the power of OOP, making a class and creating as many objects
from that in an instant, adding and deleting by your application needs. Now, for a
second let’s go back to our cooking metaphor (yummi!) and imagine that your cookies,
even sharing the same cookie cutter and dough using some different sprinkles on each
won’t hurt and add some desired variation to our cookie jar selection! This is also the
power of OOP and inheritance: by allowing to use a base class and add some specific
behaviours overwrite some of the behaviours of a class, creating a subset of instances
/ objects with slightly different behaviors. The great thing about this is it’s repurpos-
ability, we’re using the ‘mother’ class as a starting point, using all its capabilities but
we overwrite one of its methods to give it more flexibility. Going back to our oFBall
class intial version (step 1) we’ll build some ‘daughter’ classes based on its main char-
acteristics (motion behaviors and shape) but we’ll distinct each inherited subClass by
using a different color on its drawing method. Your ofBall header file should look like
this:� �
#ifndef _OF_BALL // if this class hasn't been defined, the program

can define it
#define _OF_BALL // by using this if statement you prevent the class

to be called more than once which would confuse the
compiler

#include "ofMain.h"

115

6 Ooops! = Object Oriented Programming + Classes

class ofBall {

public: // place public functions or variables declarations here

void update();
void draw();

// variables
float x;
float y;
float speedY;
float speedX;
int dim;

ofColor color;

ofBall();

private:

};
#endif� �
And let’s make some slight changes on the implementation file: lets; chage the min
and maximum values of the random size to larger values and set the position to the
center of the screen.Make it look like this:� �
#include "ofBall.h"

ofBall::ofBall(){
x = ofGetWidth()*.5;
y = ofGetHeight()*.5;
dim = ofRandom(200,250);

speedX = ofRandom(-1, 1);
speedY = ofRandom(-1, 1);

color.set(ofRandom(255), ofRandom(255), ofRandom(255));
}� �
We can leave the update() and draw() functions as they were. Now,let’s start making
‘daughter’ versions of this ‘mother’ class. Create a new Class set of files and name
them ‘ofBallBlue’. Feel free to copy the code below and it’s ‘.h’ shoudl look like this:� �
#pragma once // another and more modern way to

prevent the compiler from including this file more than once

#include "ofMain.h"

116

6.10 Quick intro to polymorphism (inheritance)

#include "ofBall.h" // we need to include the 'mother'
class, the compiler will include the mother/base class so we have
access to all the methods inherited

class ofBallBlue : public ofBall { // we set the class to
inherit from 'ofBall'

public:

void draw(); // this is the only methid we actually
want to be different from the 'mother class'

};� �
On the ‘.cpp’ file we’ll need to them specify what we want the new ‘draw()’ method to
do uniquely.� �
#include "ofBallBlue.h"

void ofBallBlue::draw(){
ofSetColor(ofColor::blue); // this is a shortcut for full

blue color ;)
ofCircle(x, y, dim);

}� �
Now, on your own, create two new classes: ofBallRed and ofBallGreen based on ofBall
class like ofBlue is. Back to your testApp.h, include the newly made classes and create
one instance of each and in your testApp.cpp file initialize them and call their update()
and draw() methods. A quick trick! right before you call the draw method, make this
call:� �
ofEnableBlendMode(OF_BLENDMODE_ADD);� �
This will make your application drawing methods have an Additive Blending Mode. For
more on this check Chapter??.

Hope you enjoyed this short tutorial! have fun!

117

7 Animation

by Zach Lieberman¹

with edits from Kayla Lewis

7.1 Background

The word animation is a medieval term stemming from the Latin animare, which means
‘ instill with life’. In modern terms, it’s used to describe the process of creating move-
ment from still, sequential images. Early creators of animation used spinning discs
(phenakistoscopes) and cylinders (zoetropes) with successive frames to create the il-
lusion of a smooth movement from persistence of vision. In modern times, we’re quite
used to other techniques such as flip books and cinematic techniques like stop motion.
Increasingly, artists have been using computational techniques to create animation –
using code to “bring life” to objects on the screen over successive frames. This chapter
is going to look at these techniques and specifically try to address a central question:
how can we create compelling, organic, and even absurd movement through code?

As a side note, I studied fine arts, painting and printmaking, and it was accidental that
I started using computers. The moment that I saw how you could write code to move
something across the screen, even as simple as silly rectangle, I was hooked. I began
during the first dot-com era working with flash / actionscript and lingo / director and
have never looked back.

This chapter will first explain some basic principles that are useful to understanding
animation in OF, then attempt to show a few entrypoints to interesting approaches.

7.2 Animation in OF / useful concepts:

7.2.1 Draw cycle

The first point to make about animation is that it’s based on successive still frames. In
openFrameworks we have a certain loop cycle that’s based roughly on game program-
ming paradigms. It goes like this:

¹http://thesystemis.com

119

http://thesystemis.com

7 Animation

• setup()
• update()
• draw()
• update()
• draw()
• ….

Setup gets called once, right at the start of an OF apps lifecycle and update / draw
get called repeatedly. Sometimes people ask why two functions get called repeatedly,
especially if they are used to Processing, which has only a setup and a draw command.
There are a few reasons. The first is that drawing in openGL is asynchronous, meaning
there’s a chance, when you send drawing code to the computer, that it can return
execution back to your program so that it can perform other operations while it draws.
The second is that it’s generally very practical to have your drawing code separated
from your non-drawing code. If you need to quickly debug something–say, for example,
your code is running slow–you can comment out the draw function and just leave the
update running. It’s separating out the update of the world from the presentation and
it can often help clean up and organize your code. Think about it like a stop frame
animator working with an overhead camera that might reposition objects while the
camera is not taking a picture then snap a photograph the moment things are ready.
In the update function you would be moving things around and in the draw function
you draw things exactly as they are at that moment.

7.2.2 Variables

The second point to make about animation is that it requires variables. A variable is a
placeholder for a value, which means that you can put the value in and you can also
get the value out. Variables are essential for animation since they “hold” value from
frame to frame–e.g., if you put a value in to a variable in the setup function or update
function, you can also get it out from memory in the draw function. Take this example:

[note: simple animation example here]

7.2.3 Frame rate

The third point to make about OF and animation is frame rate. We animate in open-
frameworks using successive frames. Frame rate refers to how quickly frames get drawn.
In OF there are several important functions to know about.

• ofGetFrameRate() returns the current frame rate (in frames per second). Set it
0 to run as fast as possible

120

7.2 Animation in OF / useful concepts:

• ofSetFrameRate(float targetFrameRate) sets the maximum frame rate. If
the software is animating faster than this, it will slow it down. Think of it like a
speed limit. It doesn’t make you go faster, but it prevents you from going too fast.

In addition, openGL works with an output display and will attempt to synchronize with
the refresh rate of the monitor – sometimes called vertical-sync or vertical blanking. If
you don’t synchronize with the refresh rate, you can get something called frame tearing,
where the non-synchronization can mean frames get drawn before and after a change,
leading to horizontal lines of discontinuity, called screen tearing²

[note: frame rip graphic here]

We have a function in OF for controlling this. Some graphics card drivers (see for
example Nvidia’s PC drivers) have settings that override application settings, so please
be sure to check your driver options.

• ofSetVerticalSync (bool bUseSync) set this true if you want to synchronized
vertically, false if you want to draw as fast as possible.

By default, OF enables vertical sync and sets a frame rate of 60FPS. You can adjust the
VSYCN and frame rate settings if you want to animate faster, but please note that by
default OF wants to run as fast as possible. It’s not uncommon if you are drawing a
simple scene to see frame rates of 800 FPS if you don’t have VSYNC enabled (and the
frame rate cap set really high or disabled).

Another imporant point which is a bit hard to cover deeply in this chapter is frame rate
independence. If you animate using a simple model – say for example, you create a
variable called xPos, increase it by a certain amount every frame and draw it.� �
void testApp::setup(){

xPos = 100;
}

void testApp::update(){
xPos += 0.5;

}

void testApp::draw(){
ofRect(xPos, 100, 10, 10);

}� �
this kind of animation works fine, but it assumes that your frame rate is constant. If you
app runs faster, say by jumping from 30fps to 60fps, the object will appear to go twice as
fast, since there will be 2x the number of update and draw functions called per second.
Typically more complex animation will be written to take this into account, either by
using functions like time (explained below) or mixing the frame rate or elapsed time
into your update. For example, a solution might be something like:
²http://en.wikipedia.org/wiki/Screen_tearing

121

http://en.wikipedia.org/wiki/Screen_tearing

7 Animation

� �
void testApp::update(){

xPos += 0.5 * (30.0 / ofGetFrameRate());
}� �
if ofGetFrameRate() returns 30, we multiply 0.5 by 1, if ofGetFrameRate() returns 60, we
multiply it by 1/2, so although we are animating twice as fast, we take half sized steps,
therefore effectively moving at the same speed regardless of framerate. Framerate
indepence is fairly important to think about once you get the hang of things, since as
observers of animation, we really do feel objects speeding up or slowwing down even
slightly, but in this chapter I will skip it for the sake of simplicity in the code.

7.2.4 Time functions

Finally, there are a few other functions that are useful for animation timing:

• ofGetElapsedTimef() returns the elapsed time in floating point numbers, start-
ing from 0 when the app starts.

• ofGetElapsedTimeMillis() similarly returns the elapsed time starting from 0
in milliseconds.

• ofGetFrameNum() returns the number of frames the software has drawn. If you
wanted, for example, to do something every other frame you could use the mod
operator, e.g., if (ofGetFrameNum()% 2 == 0).

7.2.5 Objects

In these examples, I’ll be using objects pretty heavily. It’s helpful to feel comfortable
with OOP to understand the code. One object that is used heavily is ofPoint, which
contains an x,y and z variable. In the past this was called “ofVec3f” (vector of three
floating point numbers), but we just use the more convenient ofPoint. In some anima-
tion code, you’ll see vectors used, and you should know that ofPoint is essentially a
vector.

You will also see objects that have basic functionality and internal variables. I will
typically have a setup, update and draw inside them. A lot of times, these objects are
either made because they are useful recipies to have many things on the screen or
they help by putting all the variables and logic of movement in one place. I like to
have as little code as possible at the testApp / ofApp level. If you are familiar with
actionscript / flash, this would be similar to having as a little as possible in your main
timeline.

122

7.3 linear movement

7.3 linear movement

7.3.1 getting from point a to point b

One of the most important things to think about when it comes to animation is answer-
ing the simple question:

how do you get from point A to point B?

In this chapter we will look at animating movement (changing position over time) but
we could very well be animating any other numeric property, such as color, the width
or height of a drawn shape, radius of a circle, etc.

The first and probably most important lesson of animation is that we love numbers
between 0 and 1.

[note: love picture here]

The thing about numbers between 0 and 1 is that they are super easy to use in inter-
esting ways. We typically refer to these kinds of numbers as percent, and you’ll see me
use the shorthand pct in the code–this is a floating point number between 0 and 1. If
we wanted to get from point A to point B, we could use this number to figure out how
much of one point and how much of another point to use. The formula is this:� �
((1-pct) * A) + (pct * B)� �
To add some detail if we are 0 pct of the way from A to B, we calculate� �
((1-0) * A) + (0 * B)� �
which simplifies to (1*A + 0*B) or A. If we are 25 percent of the way, it looks like� �
((1-0.75) * A) + (0.25 * B)� �
which is 75% of A + 25% of B. Essentially by taking a mix, you get from one to the other.
The first example shows how this is done.

[note: linear example code here]

As a side note, the function ofMap, which maps between an input range, uses pct inter-
nally. It takes a value, converts it into a percentage based on the input range, and then
uses that pct to find the point between the output range. [note: see omer’s chapter]

7.3.2 Curves

One of the interesting properties of numbers between 0 and 1 is that they can be easily
adjusted / curved.

123

7 Animation

The easiest way to see this is by raising the number to a power. A power, as you might
remember from math class, is multiplying a number by itself, e.g., 2ˆ3 = 2*2*2 = 8.
Numbers between 0 and 1 have some interesting properties. If you raise 0 to any
power it equals 0 (0x0x0x0 = 0). The same thing is true for 1 (1*1*1*1 = 1), but if
you raise a number between 0 and 1 to a power, it changes. For example, 0.5 to the 2nd
power = 0.25.
Let’s look at a plot of pct raised to the second power:
[note: plot grpahic here]
[note: better explanation of how to read the chart] Think about the x value of the plot
as the input and y value as the output. If put in 0, we get out a y value of 0, if we put
in 0.1, we get out a y value of 0.01, all the way to putting in a value of 1 and getting out
a value of 1.
As side note, it’s important to note that things in the world often don’t move linearly.
They don’t take “even” steps. Roll a ball on the floor, it slows down. It’s accelerating in a
negative direction. Sometimes things speed up, like a baseball bat going from resting
to swinging. Curving pct leads to interesting behavior. The objects still take the same
amount of time to get there, but they do it in more lifelike, non-linear ways.

Figure 7.1: nonlinear

If you raise the incoming number between 0 and 1 to a larger power it looks more
extreme. Interestingly, if you raise this value between 0 and 1 to a fractional (rational)
power (i.e., a power that’s less than 1 and greater than 0), it curves in the other direction.
The second example shows an animation that uses pct again to get from A to B, but in
this case, pct is raised to a power:

124

7.3 linear movement

In the 4th example (4_rectangleInterpolatePowfMultiple), you can see a variety of
these rectangles, all moving with different shaping functions. They take the same
amount of time to get from A to B, but do it in very different ways. I usually ask my
students to guess which one is moving linearly – see if you can figure it out without
looking at the code:

Figure 7.2: xeno diagram

http://en.wikipedia.org/wiki/12_basic_principles_of_animation#Slow_in_and_slow_out

[note: can we get rights for a screenshot of masahiko sato curves DVD ?]

Raising percent to a power is one of a whole host of functions that are called “shap-
ing functions” or “easing equations.” Robert Penner wrote about and derived many of
these functions so they are also commonly reffered to as “Penner Easing Equations.”
Easings.net³ is a good resource, as well there are several openFrameworks addons for
easing.

• http://sol.gfxile.net/interpolation/#c1
• http://easings.net/

7.3.3 Zeno

A small twist on the linear interpolation is a technique that I call “Zeno” based on Zeno
the greek philosopher’s dichotomy paradox:

Imagine there is a runner running a race and the runner runs 1/2 of the
distance in a certain amount of time, and then they run 1/2 of the remaining

³http://easings.net/

125

http://easings.net/

7 Animation

distance in the same amount of time, and run 1/2 of the remaining the
distance the distance, etc. Do they finish the race? There is always some
portion of the distance remaining left to run one half of. The idea is that
you can always keep splitting the distance.

If we take the linear interpolation code but always alter our own position instead (e.g.,
take 50% of our current position + 50% of our target position), we can animate our way
from one value to another. I usually explain the algorithm in class by asking someone
to do this:

1. Start at one position in your room.
2. Pick a point to move to.
3. Calculate the distance between your current position and that point.
4. Move 50% closer.
5. Go to (3).

Figure 7.3: xeno diagram

In code, that’s basically the same as saying� �
currentValue = currentValue + (targetValue - currentValue) * 0.5.� �
In this case targetValue - currentValue is the distance. You could also change the
size of the step you make every time, for example, taking steps of 10% instead of 50%:� �
currentValue = currentValue + (targetValue - currentValue) * 0.1.� �
If you expand the expression, you can write the same thing this way:

126

7.4 Function based movement

� �
currentValue = currentValue * 0.9 + targetValue * 0.1.� �
This is a form of smoothing: you take some percentage of your current value and
another percentage of the target and add them together. Those percentages have to
add up to 100%, so if you take 95% of the current position, you need to take 5% of the
target (e.g., currentValue * 0.95 + target * 0.05).

In Zeno’s paradox, you never actually get to the target, since there’s always some re-
maining distance to go. On the computer, since we are dealing with pixel positions on
the screen and floating point numbers at a specific range, the object appears to stop.

In the 5th example (5_rectangleXeno), we add a function to the rectangle that uses
xeno to catch up to a point:� �
void rectangle::xenoToPoint(float catchX, float catchY){

pos.x = catchUpSpeed * catchX + (1-catchUpSpeed) * pos.x;
pos.y = catchUpSpeed * catchY + (1-catchUpSpeed) * pos.y;

}� �
Here, we have a value, catchUpSpeed, that represents how fast we catch up to the
object we are trying to get to. It’s set to 0.01 (1%) in this example code, which means
take 99% of my own postion, 1% of the target position and move to their sum. If you
alter this number you’ll see the rectangle catch up to the mouse faster or slower. 0.001
means it will run 10 times slower, 0.1 means ten times faster.

This technique is very useful if you are working with noisy data – a sensor for example.
You can create a variable that catched up to it using xeno and smoothes out the result.
I use this quite often when I’m working with hardware sensors / physical computing,
or when I have noisy data. The nice thing is that the catch up speed becomes a knob
that you can adjust between more real-time (and more noisey data) and less real-time
(and more smooth) data. Having that kind of control comes in handy!

7.4 Function based movement

In this section of the book we’ll look at a few examples that show function based
movement, which means using a function that takes some input and returns an output
that we’ll use for animation. For input, we’ll be passing in counters, elapsed time,
position, and the output we’ll use to control position.

7.4.1 Sine and Cosine

Another interesting and simple system to experiment with motion in openframeworks
is using sin and cos.

127

7 Animation

Sin and cos (sine and cosine) are trigonometric functions, which means they are based
on angles. They are the x and y position of a point moving in a constant rate around a
circle. The circle is a unit circle with a radius of 1, which means the diameter is 2*r*PI
or 2*PI. In OF you’ll see this constant as TWO_PI, which is 6.28318…

As a side note, sometimes it can be confusing that some functions in OF take degress
where others take radians. Sin and cos are part of themath library, so they take radians,
whereas most openGL rotation takes degrees. We have some helper constants such as
DEG_TO_RAD and RAD_TO_DEG, which can help you convert one to the other.

Here’s a simple drawing that helps explain sin and cos.

Figure 7.4: sin

All you have to is imagine a unit circle, which has a radius of 1 and a center position of
0,0. Now, imagine a point moving counter clockwise around that point as a constant
speed. If you look at the height of that point, it goes from 0 at the far right (3 o’clock
position), up to 1 at the top (12 o’clock), back at 0 at the left (9 o’clock) and down to -1
at the bottom (6 o’clock). So it’s a smooth, curving line that moves between -1 and 1.
That’s it. Sin is the height of this dot and cos is the horizontal position of this dot. At
the far right, where the height of this dot is 0, the horizontal position is 1. When sin is
1, cos is 0, etc. They are in sync, but shifted.

7.4.1.1 Simple examples

It’s pretty easy to use sin to animate the position of an object.

128

7.4 Function based movement

Here, we’ll take the sin of the elapsed time sin(ofGetElpasedTimef()). This returns
a number between negative one and one. It does this every 6.28 seconds. We can use
of map to map this to a new range. For example� �
void ofApp::draw(){

float xPos = ofMap(sin(ofGetElpasedTimef()), -1, 1, 0,
ofGetWidth());

ofRect(xPos, ofGetHeight/2, 10,10);
}� �
This draws a rectangle which move sinusoidally across the screen, back and forth every
6.28 seconds.

You can do simple things with offseting the phase (how shifted over the sin wave is).
In example 7 (7_sinExample_phase), we calculate the sin of time twice, but the second
time, we add PI: ofGetElapsedTimef()+ PI. This means to the two values will be
offset from each other by 180 degrees on the circle (imaginging our dot, when one is
far right, the other will be far left. When one is up, the other is down). Here we set the
background color and the color of a rectangle using these offset values. It’s useful if
you start playing with sin and cos to start to manipulate phase.� �
//--
void testApp::draw(){

float sinOfTime = sin(ofGetElapsedTimef());
float sinOfTimeMapped = ofMap(sinOfTime, -1, 1, 0, 255);

ofBackground(sinOfTimeMapped, sinOfTimeMapped, sinOfTimeMapped);

float sinOfTime2 = sin(ofGetElapsedTimef() + PI);
float sinOfTimeMapped2 = ofMap(sinOfTime2, -1, 1, 0,

255);

ofSetColor(sinOfTimeMapped2, sinOfTimeMapped2, sinOfTimeMapped2);
ofRect(100,100,ofGetWidth()-200, ofGetHeight()-200);

}� �
As a nerdy detail, floating point numbers are not linearly precise, e.g., there’s a different
number of floating point numbers between 0.0 and 1.0 than 100.0 and 101.0. You ac-
tually lose precision the larger a floating point number gets, so taking sin of elapsed
time can start looking crunch after some time. For long running installations I will
sometimes write code that looks like sin((ofGetElapsedTimeMillis()% 6283)/
6283.0) or something similar, to account for this. Even though ofGetElapsedTimef()

129

7 Animation

gets larger over time, it’s a worse and worse input to sin() as it grows. ofGetElapsed-
TimeMillis() doesn’t suffer from this problem since it’s an integer number and the num-
ber of integers between 0 and 10 is the same as between 1000 and 1010.

7.4.1.2 Circular movement

Since sin and cos are derived from the circle, if we want to move things in a circular
way, we can figure this out via sin and cos. We have four variables we need to know:

• the origin of the circle (xOrig, yOrig)
• the radius of the circle (radius)
• the angle around the circle (angle)

The formula is fairly simple:� �
xPos = xOrig + radius * cos(angle);
yPos = yOrig + radius * sin(angle);� �
This allows us to create something moving in a circular way. In the circle example, I
will animate using this approach.� �
float xorig = 500;
float yorig = 300;
float angle = ofGetElapsedTimef()*3.5;
float x = xorig + radius * cos(angle);
float y = yorig + radius * sin(angle);� �
Note: In OF, the top left corner is 0,0 (y axis is increasing as you go down) so you’ll
notive that the point travels clockwise instead of counter-clockwise. If this bugs you
(since above, I asked you imagine it moving counter clockwise) you can modify this
line float y = yorig + radius * sin(angle) to float y = yorig + radius *
-sin(angle) and see the circle go in the counter clockwise direction.

For these examples, I start to add a “trail” to the object by using the ofPolyline object.
I keep adding points, and once I have a certain number I delete the oldest one. This
helps us better see the motion of the object.

If we increase the radius, for example by doing:� �
void testApp::update(){

radius = radius + 0.1;
}� �
we get spirals.

130

7.4 Function based movement

7.4.1.3 Lisajous figures

Finally, if we alter the angles we pass in to x and y for this formula in different rates,
we can get interesting figures, called “Lissajous” figures, named after the French math-
ematician, Jules Antoine Lissajous. These formulas look cool. Often times I joke with
my students in algo class about how this is really a course to make cool screen savers.

7.4.2 Noise

Noise is similar sin/cos in that it’s a function that takes some input and produces
output, which we can then use for movement. In the case of sin/cos you are passing
in an angle and getting a results back that goes back and forth between -1 and 1. In
openframeworks we wrap code that uses simplex noise⁴, which is comparable to Perlin
noise and we have a function ofNoise() that takes an input and produces an output.
Both algorithms (Perlin, Simplex) provide a psueduo random noise pattern – they are
quite useful for animation, because they are continuous functions, unlike something
like ofRandom, which just returns random values.

When I say continuous function, what I mean is if you pass in smaller changes as input,
you get smaller output and if you pass in the same value you get the same result. For
example, sin(1.7) always returns the same value, and ofNoise(1.7) also always
returns the same result. Likewise if you call sin(1.7) and sin(1.75) you get results
that are continuous (meaning, you can call sin(1.71)sin(1.72)... sin(1.74) to
get intermediate results).

You can do the same thing with ofNoise – here, I write a for loop to draw noise as a line.
ofNoise takes an input, here i/10 and produces an output which is between 0 and 1.
ofSignedNoise is similar but it produces an output between -1 and 1.

Figure 7.5: noise line� �
ofBackground(0,0,0);
ofSetColor(255);

ofNoFill();
ofBeginShape();
for (int i = 0; i < 500; i++){

⁴http://en.wikipedia.org/wiki/Simplex_noise

131

http://en.wikipedia.org/wiki/Simplex_noise

7 Animation

float x = i;
float noise = ofNoise(i/10.0);
float y = ofMap(noise, 0,1, 0, 100);
ofVertex(x,y);

}
ofEndShape();� �
If you alter the i/10.0, you can adjust the scale of the noise, either zooming in (ie,
i/100.0), so you see more details, or zooming out (ie, i/5.0) so you see more variation.

Figure 7.6: noise with i dividied by 100

Figure 7.7: noise with i dividied by 5

We can use noise to animate, for example, here, we move an object on screen using
noise:� �
float x = ofMap(ofNoise(ofGetElapsedTimef()), 0, 1, 0,

ofGetWidth());
ofCircle(x,200,30);� �
If we move y via noise, we can take a noise input value somewhere “away” from the x
value, ie further down the curved line:� �
float x = ofMap(ofNoise(ofGetElapsedTimef()), 0, 1, 0,

ofGetWidth());
float y = ofMap(ofNoise(1000.0+ ofGetElapsedTimef()), 0, 1, 0,

ofGetHeight());
ofCircle(x,y,30);� �
Alternatively, ofNoise takes multiple demensions. Here’s a quick sketch moving some-
thing in a path via ofNoise using the 2d dimensions

The code for this example (note the 2 inputs into ofNoise, this is a 2-dimensional noise
call. it allows us to use the same value for time, but get different results):

132

7.4 Function based movement

Figure 7.8: noise via 2d

� �
//--
void ofApp::setup(){

ofBackground(0);
ofSetBackgroundAuto(false);

}

//--
void ofApp::update(){
}

//--
void ofApp::draw(){

float x = ofMap(ofNoise(ofGetElapsedTimef()/2.0, -1000), 0, 1,
0, ofGetWidth());

float y = ofMap(ofNoise(ofGetElapsedTimef()/2.0, 1000), 0, 1,
0, ofGetHeight());

ofNoFill();
ofCircle(x,y,3);

}� �
There’s a ton more we can do with noise, we’ll leave it for now but encourage you to
look at the noise examples that come with openframeworks, which show how noise
can be use to create lifelike movement. Also, we encourage readers to investigate the

133

7 Animation

work of Ken Perlin⁵, author of the simplex noise algorithm – he’s got great examples of
how you can use noise in creative playful ways.

7.5 Simulation

If you have a photograph of an object at one point in time, you know its position. If
you have a photograph of an object at another point in time and the camera hasn’t
changed, you can measure its velocity, i.e., its change in distance over time. If you have
a photograph at three points in time, you can measure its acceleration, i.e., how much
the speed changing over time.

The individual measurements compared together tell us something about movement.
Now, we’re going to go in the opposite direction. Think about how we can use mea-
surements like speed and acceleration to control position.

If you know how fast an object is traveling, you can determine how far it’s traveled in
a certain amount of time. For example, if you are driving at 50 miles per hour (roughly
80km / hour), how far have you traveled in one hour? That’s easy. You’ve traveled 50
miles. How far have you traveled in two or three hours? There is a simple equation to
calculate this distance:� �
position = position + (velocity * elapsed time)� �
e.g.:� �
position = position + 50 * 1; // for one hour away� �
or� �
position = position + 50 * 2; // for two hours driving� �
The key expression–position = position + velocity–in shorthand would be p=p+v.

Note, the elapsed time part is important, but when we animate we’ll be doing p=p+v
quite regularly and you may see us drop this to simplify things (assume every frame
has an elapsed time of one). This isn’t entirely accurate but it keeps things simple. See
the previous section on frame rate (and frame rate independence) for more details

In addition, if you are traveling at 50 miles per hour (apologies to everyone who thinks
in km!) and you accelerate by 5 miles per hour, how fast are you driving in 1 hr? The
answer is 55 mph. In 2 hrs, you’d be traveling 60 mph. In these examples, you are doing
the following:� �
velocity = velocity + acceleration� �
⁵http://mrl.nyu.edu/~perlin/

134

http://mrl.nyu.edu/~perlin/

7.5 Simulation

In shorthand, we’ll use v=v+a. So we have two important equations for showing move-
ment based on speed:� �
p = p + v; // position = position + velocity
v = v + a; // velocity = velocity + acceleration� �
The amazing thing is that we’ve just described a system that can use acceleration to
control position. Why is this useful? It’s useful–if you remember from physics class–
because Newton had very simple laws of motion, the second of which says� �
Force = Mass x Acceleration� �
In shorthand, F = M x A. This means force and acceleration are linearly related. If we
assume that an object has a mass of one, then force equals acceleration. This means
we can use force to control velocity and velocity to control position.

The cool, amazing, beautiful thing is that are plenty of forces we can apply to an object,
such as spring forces, repulsion forces, alignment forces, etc.

I have several particle examples that use this approach, and while I won’t go deeply
into them, I’ll try to explain some interesting ideas you might find

7.5.1 particle class

The particle class in all of the examples is designed to be pretty straight forward. Let’s
take a look at the H file:� �
class particle{

public:

ofPoint pos;
ofPoint vel;
ofPoint frc;
float damping;

particle();
void setInitialCondition(float px, float py, float vx, float

vy);

void resetForce();
void addForce(float x, float y);
void addDampingForce();

void update();
void draw();

};� �
135

7 Animation

For variables, it has ofPoint objects for position, velocity and force (abbreviated as
pos, vel and frc). It also has a variable for damping, which represents how much this
object slows down over time. A damping of 0 would mean not slowing down at all, and
as damping gets higher, it’s like adding more friction - imagine rolling a ball on ice,
conrete or sand, it would slow down at different rates.

In terms of functions, it has a contructor which sets some internal variables like damp-
ing and a setInitialCondition() that allows you to set the position and velocity of the
particle. Think about this as setting up its initial state, and from here you let the parti-
cle play out. The next three functions are about forces (we’ll see more) – the first one,
resetForce(), clears all the internal force variable frc. Forces are not cummualtive
across frames, so at the start of every frame we clear it. addForce() adds a force in
a given direction, useful for constant forces, like gravity. addDampingForce() adds a
force opposite velocity (damping is a force felt opposite the direction of travel). Finally,
update takes forces and adds it to velocity, and takes velocity and adds it to position.
Draw just draws a dot where position is.

The particle class is really simple, and throughout these examples, we add complexity
to it. In general though formula you will see in all the examples is:� �
for (int i = 0; i < particles.size(); i++){

particles[i].resetForce();
}

// <------ magic happens here --------->

for (int i = 0; i < particles.size(); i++){
particles[i].update();

}� �
where the magic is happening between the reset force and update. Although these
examples increase in complexity, they do so simply by adding new functions to the
particle class, and adding more things between reset and update.

[note: add screenshot of simple particle examples]

7.5.2 simple forces, repulsion and attraction

In the next few examples, I added a few functions to the particle object:� �
void addRepulsionForce(float px, float py, float radius, float

strength);
void addAttractionForce(float px, float py, float radius, float

strength);
void addClockwiseForce(float px, float py, float radius, float

strength);

136

7.5 Simulation

void addCounterClockwiseForce(float px, float py, float radius,
float strength);� �

They essentially adds forces the move towards or away from a point that you pass in,
or in the case of clockwise forces, around a point.

Figure 7.9: sin

The calculation of these forces is fairly straight forward - first, we figure out how far
away from a point is from the center of the force. If it’s outside of the radius of in-
teraction, we disregard it. If it’s inside, we figure out its percentage , ie, the distance
between the force and the particle devided by the radius of interaction. This gives us
a number that’s close to 1 when we towards the far edge of the circle and 0 as we get
towards the center. If we invert this, by taking 1 - percent, we get a number that’s small
on the outside, and larger as we get closer to the center.

This is useful because often times forces are proportional to disctance. For example,
a magnetic force will have a radius at which it works, and the closer you get to the
magnet the stronger the force.

Here’s a quick look at one of the functions for adding force:� �

137

7 Animation

void particle::addAttractionForce(float px, float py, float radius,
float strength){

ofVec2f posOfForce;
posOfForce.set(px, py);
ofVec2f diff = pos - posOfForce;

if (diff.length() < radius){
float pct = 1 - (diff.length() / radius);
diff.normalize();
frc.x -= diff.x * pct * strength;
frc.y -= diff.y * pct * strength;

}
}� �
diff is a line between the particle and the position of the force. If the length of diff is
less then the radius, we calculate the pct as a number that goes between 0 and 1 (0 on
the outside of the radius of interaction, 1 as we get to the center of the force). We take
the line diff and normalize it to get a “directional” vector, its magnitude (distance) is
one, but the angle is still there. We then multiply that by pct * strength to get a line
that tells us how to move. This gets added to our force.

You’ll notice that all the code is relatively similar, but with different additions to force.
For example, repulsion is just the opposite of attraction:� �

frc.x += diff.x * pct * strength;
frc.y += diff.y * pct * strength;� �

We just move in the oppisite direction. For the clockwise and counter clockwise forces
we add the perpindicular of the diff line. The perpindicular of a 2d vector is just simply
switching x and y and making one of them negative.

[more: show example]

7.5.3 particle particle interaciton

Now that we have particles interacting with forces, the next step is to give them more
understanding of each other. For example, if you have a broad attraciton force, they
will all converge on the same point without any respect for their neighbors. The trick
is to add a function that allows the particle to feel a force based on their neighbor.

We’ve added new functions to the particle object (looking in the h file):� �
void addRepulsionForce(particle &p, float radius, float scale);
void addAttractionForce(particle &p, float radius, float scale);� �
138

7.5 Simulation

This looks really similar to the code before, except here we pass in a particle instead
of an x and y position. You’ll notice that we pass by reference (using &) as opposed
to passing by copy. This is because internally we’ll alter both the particle who has this
function called as well as particle p – ie, if you calculate A vs B, you don’t need to
calculate B vs A.� �
void particle::addRepulsionForce(particle &p, float radius, float

scale){

// ----------- (1) make a vector of where this particle p is:
ofVec2f posOfForce;
posOfForce.set(p.pos.x,p.pos.y);

// ----------- (2) calculate the difference & length

ofVec2f diff = pos - posOfForce;
float length = diff.length();

// ----------- (3) check close enough

bool bAmCloseEnough = true;
if (radius > 0){

if (length > radius){
bAmCloseEnough = false;

}
}

// ----------- (4) if so, update force

if (bAmCloseEnough == true){
float pct = 1 - (length / radius); // stronger on the inside
diff.normalize();
frc.x = frc.x + diff.x * scale * pct;
frc.y = frc.y + diff.y * scale * pct;
p.frc.x = p.frc.x - diff.x * scale * pct;
p.frc.y = p.frc.y - diff.y * scale * pct;

}
}� �
The code should look very similar to before, except with these added lines:� �
frc.x = frc.x + diff.x * scale * pct;
frc.y = frc.y + diff.y * scale * pct;
p.frc.x = p.frc.x - diff.x * scale * pct;
p.frc.y = p.frc.y - diff.y * scale * pct;� �
This is modifying both the particle you are calling this on and the particle that is passed
in.

139

7 Animation

This means we can cut down on the number of particle particle interactions we need
to calculate:� �
for (int i = 0; i < particles.size(); i++){

for (int j = 0; j < i; j++){
particles[i].addRepulsionForce(particles[j], 10, 0.4);

}
}� �
you’ll notice that this 2d for loop, the inner loop counts up to the outer loop, so when
i is 0, we don’t even do the inner loop. When i is 1, we compare it to 0 (1 vs 0). When i
is 2, we compare it to 0 and 1 (2 vs 0, 2 vs 1). This way we never compare a particle with
itself, as that would make no sense (although we might know some poeple in our lives
that have a strong self attraction or repulsion).

[note: maybe a diagram to clarify]

One thing to note is that even through we’ve cut down the number of calculations, it’s
still quite a lot! This is a problem that doen’t scale linearly. In computer science, you
talk about a problem using “O” notation, ie big O notation. This is a bite more like Oˆ2
/ 2 – the complexity is like 1/2 of a square. If you have 100 particles, you are doing
almost 5000 calculations (100 * 100 / 2). If you have 1000 particles, it’s almost half a
million. Needless to say, lots of particles can get slow…

We don’t have time to get into it in this chapter, but there’s different approaches to
avoiding that many calculations. Many of them have to deal with spatial hashing, ways
of quickly identifying which particles are far away enough to not even consider (thus
avoiding a distance calculation).

7.5.4 local interactions lead to global behavior

Figure 7.10: sin

140

7.6 where to go further

7.6 where to go further

7.6.1 physics and animation libraries

141

8 Information Visualization Chapter

by Tega Brain¹

This chapter gives a brief overview of working with data in OpenFrameworks and intro-
duces some basic information visualisation techniques. It describes steps in the data
visualisation process, common file formats and useful functions for converting data. It
is structured using two specific examples; a time based plot and a map with geolocated
data.

8.1 Intro

8.1.1 What is data? What is information?

Computation has driven a huge increase in our capacity to collect, sort and store data
and yet our ability to understand it remains limited by our sensory and cognitive ca-
pacities. A visual process that is used across multiple fields, data visualisation is a way
of interpreting and presenting data and can potentially reveal trends and patterns that
might otherwise remain invisible.

Data are symbols or numerical interpretations that represent the properties of objects
and environments (Ackoff, 1989). Information is produced from analysing the context
and descriptive qualities of data, it relates to why the data was collected. Although
these terms are often used interchangeably, in the field of information science data
is generally thought of as a raw material from which information is produced through
analytical processes.

8.1.2 Steps of visualising data

Ben Fry is a data artist and the author of Visualizing Data (2008), a well-known text
outlining data visualisation approaches for the Processing programming environment.
In this excellent reference text Fry describes seven stages for visualising data and these
provide a useful structure for approaching data-driven projects. These steps are:

*Acquire: Obtain the data. Data is commonly made available in files downloadable
from online sources such as weather services, newspapers, census records and from
¹http://www.tegabrain.com/

143

http://www.tegabrain.com/

8 Information Visualization Chapter

social media platforms. However there are also times when you may need to compile
and format data from hardware or sensors. Real-time data is often available via an
Application Programming Interfaces (API), which is an interface or a set of rules that
define the process of how other applications can communicate with it. Every API is
designed differently and therefore can be communicated with in different ways. This
chapter presents two examples of visualising a static dataset imported into OF from
external files, and an example that reads data from the New York Times API.

*Parse: Provide some structure for the data’s meaning, and order it into categories.
Once you have obtained your data, before you load it into OpenFrameworks it is im-
portant to parse the data. Parsing means checking the file’s format. Is the dataset
tagged correctly? Check that each line of your data is broken up consistently across
columns. This can be done in a number of ways such as, printing your file out in the
terminal or opening your file in a text editor or spreadsheet program and checking for
inconsistencies or gaps.

*Filter: Remove all but the data of interest. Your dataset is likely to contain extra
information not relevant to your visualisation. For example in the tab separated (.tsv)
file shown in figure 1, the file has columns like station ID and latitude and longitude
that are not relevant to the first visualisation example. As the data is from only one
location, location information can be removed so that they do not interfere with the
your visualisation process.

*Mine: Apply methods from statistics or data mining to discern patterns in your data
and place the data in mathematical context. As Fry (2008) outlines, the mining stage of
visualising data involves applying statistical methods and math to your dataset to anal-
yse patterns and trends within it. This might be as simple as identifying the minimum
and maximum values so that you know the range of variation in its values. Depending
on your data, you may wish to calculate an average or a median value.

*Represent: Choose a basic visual model, such as a bar graph, list, or tree.

*Refine: Improve the basic representation to make it clearer and more visually engag-
ing.

*Interact: Add methods for manipulating the data or controlling what features are vis-
ible.

8.2 Working with data files in OpenFrameworks

8.2.1 Common data file structures: tsv, csv, xml, json

Data is available and stored in specific file types that have particular structures and
syntax. The following file types are some of the most common forms of structuring
data.

144

8.2 Working with data files in OpenFrameworks

CSV: Comma separated values (csv) files are files where entries in the lines of the file are
separated by commas. These can be directly imported into OF by using the ofxCsv add-
on. This add-on allows for the reading and writing of CSV file. TSV: Tab separated value
files are text files where entries in the lines of the file are separated by tabs. These can
be directly imported into OF. *XML: XML files are written in EXtensible Markup Language.
XML files are composed of tags that define a data hierarchy for the values within them.
A tag has a name, attributes and values within it. If tags are nested the enclosing
tags are called parent tags and the nested tags are the children. The tags next to one
another are siblings.� �
<parentTagName>

<childtagName
attributeName="attributeValue">TagValue</childtagName>

<siblingTag />
</parentName>� �
Reading an XML file in OF requires the use of an OF addon called ofXmlSettings.

*JSON: JSON stands for ‘javascript object notation’. This is a human readable file that
is built on two structures, a collection of name/value pairs which can be realised in OF
as a struct and an ordered list of values, realised as a vector. Json files also are parsed
using an OF addon called ofxJSON, see example 2.XX for how to implement this.

8.2.2 Example - Visualising Time Series Plot

Step 1 Acquire: This section works through an example of a data visualisation
of US population data downloaded from the United States Census service here:
http://www.nber.org/data/census-decennial-population.html

Step 2 Parse and Filter: Open this file in a spreadsheet program and inspect its con-
tents. You will see that there is an population data for all the regions of the USA from
1900-1990. This example visualises the total population data and data from New York,
Louisiana and Alabama so we must construct the data file with only the data from
those particular states. You will want to copy and past the selected data into a new
spreadsheet so that you are working with a file structure that looks like Figure 1. If you
are working in Excel to parse the data, this program has a useful way of transposing
the table. Copy a row from the original spreadsheet, and then paste it into your new
file by selecting the “Paste Special” option in the Edit menu and selecting “Transpose”
before hitting ok.

IMAGE HERE.

Check the data for any gaps or strange characters.

Ensure that you do not have any extra labelling or text at the top and bottom of the
data columns. Your final file should only have a row of data labels in the first row.

145

8 Information Visualization Chapter

Step 3 Mine: Check each variable for minimum and maximum values so that you know
the approximate range of variation. Check for any strange outlying values.

Save your file as a tsv file.

Loading Your file into an OF Project Firstly generate a new project remembering to in-
clude the add-ons if your data is in csv or json format. Then save the parsed population
data file to the ‘bin’ folder of your OF project.

Once your project file is set up, we will now work through writing the code.

Organising your data. Firstly we will need several structures to keep our data organised
and allow easy access to it.

*Vectors? Explain here – or has this happened elsewhere?

Vectors are an important data structure for storing lists of data in OF. Here we define
a vector of structs, where each struct is a list of variables, and each list of variables
holds the values from each line of our data file.

Structs ? Structs are useful way for declaring lists of related variables with one name
and stored in one block of memory. In this case, each list contains data points from
each column of our data file. Each variable of a struct can then be accessed by a single
pointer. The following defines a struct called popData that contains five variables. Like
all declarations, structs are declared in the h file of your program. This struct is then
wrapped in a vector called dataPoints.

IN THE MAIN.CPP FILE: We will add fAppGlutWindow.h to the main.cpp file. This makes
the default window manager based on glut. This class provides all the functionality to
create a window, change/query it’s size and position. Our file will look like this:� �
#include "ofMain.h"
#include "testApp.h"
#include "ofAppGlutWindow.h"

int main(){

ofAppGlutWindow window;
ofSetupOpenGL(&window, 1024,768, OF_WINDOW); //

<-------- setup the GL context

// this kicks off the running of my app
// can be OF_WINDOW or OF_FULLSCREEN
// pass in width and height too:
ofRunApp(new testApp());

}� �

146

8.2 Working with data files in OpenFrameworks

IN THE H FILE: We define a struct called timeData which will hold the values from each
line of our file.� �
typedef struct {

int year;
float ny;
float lou;
float ala;

} timeData;� �
We will then declare a vector that contains a list of structs, one for each line of our
data file.� �
class testApp : public ofBaseApp{

public:
vector < popData > dataPoints;
};� �
Explain typedef ???

We will also need to declare some variables to contain some minimum and maximum
values from our dataset.� �
int minYear;

int maxYear;
float maxValue;

ofRectangle dimensions;� �
In summary, our H FILE will look like this:� �
#pragma once

#include "ofMain.h"

typedef struct {

int year;
float ny;
float lou;
float ala;

} popData;

class testApp : public ofBaseApp{

147

8 Information Visualization Chapter

public:
void setup();
void update();
void draw();

void keyPressed (int key);
void keyReleased(int key);
void mouseMoved(int x, int y);
void mouseDragged(int x, int y, int button);
void mousePressed(int x, int y, int button);
void mouseReleased(int x, int y, int button);
void windowResized(int w, int h);
void dragEvent(ofDragInfo dragInfo);
void gotMessage(ofMessage msg);

vector < popData > dataPoints;

int minYear;
int maxYear;
float maxValue;

ofRectangle dimensions;

};� �
IN THE TESTAPP FILE:

We will now load the data file into OF using the ofBuffer class.

8.2.2.1 ofBuffer Class

ofBuffer will read the data into a buffer which is temporary storage for it as we write
code to restructure and process it. ofBuffer is what is known as a convenience class,
and provides easy methods for reading from and writing to files. A convenience class
simply means that this is a class that doesn’t do anything by itself but wraps or allows
access to the functionality of a group of other classes.

8.2.2.2 Buffer Functions

ofBufferFromFile(); is a function that allows you to load your data file.� �
ofBuffer file = ofBufferFromFile“(population.tsv");
cout␣<<␣file.getText();� �
148

8.2 Working with data files in OpenFrameworks

This loads the population.tsv file into a variable called ‘file’. Then we have printed out
the contents of the variable ‘file’ using getText() which allows us to check the file has
loaded correctly.

getFirstLine(); Returns all text up to the first new line which ends at the first carriage
return.� �
string nameLine = file.getFirstLine();� �

We have used getFirstLine(); to copy the first line of the file containing the labels into
a string called ‘nameLine’.

getNextLine(); Returns the next row of the data file as marked by \n or \r (new line
characters). isLastLine(); Returns the last line of the file.

These functions can be combined to run through each line of data in the buffer and .
We can nest this function in a conditional function that checks we are not at the last
line of our file, here the while() loop is used. When the last line of the file is reached,
our program will leave the buffer and this loop.� �

while (!file.isLastLine()){
string line = file.getNextLine();
vector < string > split = ofSplitString(line, "\t");
popData data;
data.year = ofToInt(split[0]);
data.ny = ofToFloat(split[1]);
data.lou = ofToFloat(split[2]);
data.ala = ofToFloat(split[3]);
dataPoints.push_back(data);

}� �
This block of code has arranged our data into a vector called dataPoints which contains
a struct.

Using this structure, any data points can now be accessed by referring to the vector,
the variable name and the index number.

For example dataPoints[0].pop; returns the first entry of the pop list.

Now we have loaded the data from our file into a structure that allows us to access it
and manipulate it easily from the rest of our program. Putting this all together in the
testApp::setup() is shown below. The last five lines of this code sets up the dimensions
and colour of the graph.� �
void testApp::setup(){

ofBuffer file = ofBufferFromFile("population1.tsv");
cout << file.getText();

149

8 Information Visualization Chapter

// grab the first line, which is just names.
string nameLine = file.getFirstLine();

while (!file.isLastLine()){
string line = file.getNextLine();
vector < string > split = ofSplitString(line, "\t");
popData data;
data.year = ofToInt(split[0]);
data.ny = ofToFloat(split[1]);
data.lou = ofToFloat(split[2]);
data.ala = ofToFloat(split[3]);
dataPoints.push_back(data);

}

// let's round up to the next "10" on the max value
maxValue = ceil(maxValue / 10) * 10;

// let's find the min and max years, and the max value for the
data.

// years are easy, we know it's the first and last year of the
array.

minYear = dataPoints[0].year;
maxYear = dataPoints[dataPoints.size()-1].year;

// search linealy through the data to find the max value;

maxValue = 0;
for (int i = 0; i < dataPoints.size(); i++){

if (dataPoints[i].ny > maxValue){
maxValue = dataPoints[i].ny;

}
if (dataPoints[i].lou > maxValue){

maxValue = dataPoints[i].lou;
}
if (dataPoints[i].ala > maxValue){

maxValue = dataPoints[i].ala;
}

}

// let's round up to the next "10" on the max value
maxValue = ceil(maxValue / 10) * 10;

dimensions.x = 150;
dimensions.y = 150;
dimensions.width = 700;
dimensions.height = 400;

150

8.2 Working with data files in OpenFrameworks

ofBackground(180,180,180);

}� �
Step 4 Represent.

The draw() part of the code incorporates a for loop maps the full range of values across
the first variable pop to the dimensions of the graph. This is a way to make our graph
responsive. If we were to now load in different data, it would be remapped according
to how many data points it contains.� �

void testApp::draw(){

ofSetColor(255,255,255);
ofRect(dimensions.x, dimensions.y, dimensions.width,

dimensions.height);

ofSetColor(90,90,90);
for (int i = 0; i < dataPoints.size(); i++){

float x = dimensions.x + ofMap(dataPoints[i].year, minYear,
maxYear, 0,dimensions.width);

float y = dimensions.y + ofMap(dataPoints[i].pop, 0,
maxValue, dimensions.height, 0);

ofCircle(x,y, 2);
}

}� �
Now you have a very basic working graph, the next steps are to add labels and interac-
tivity.

Step 6 Refine. We need to declare a font in testApp.h file:� �
ofTrueTypeFont font;
ofTrueTypeFont labelFont;� �

and then in the testApp.cpp file in setup we load the font:� �
font.loadFont("bfont.ttf", 20);
labelFont.loadFont("bFont.ttf", 10);� �

We add x axis labels using the following block of code:� �
for (int i = 0; i < dataPoints.size(); i++){

151

8 Information Visualization Chapter

if (dataPoints[i].year % 10 == 0){
float x = dimensions.x + ofMap(dataPoints[i].year,

minYear, maxYear, 0,dimensions.width);
float y = dimensions.y + dimensions.height;
ofSetColor(90,90,90);
labelFont.drawString(ofToString(dataPoints[i].year), x,

y + 20);
ofSetColor(220,220,220);
ofLine(x, y, x, dimensions.y);

}
}� �

So what does this mean? First we are iterating though each line of the dataPoints
vector using a for loop. For each value of i, we access each line of the vector. As we do
this we check:� �
if (dataPoints[i].year % 10 == 0){� �
This if statement asks if the year is divided by 10, is there a remainder? In other words,
it is a conditional that will only be true for every 10 year interval (no remainder). Within
this conditional, we are then calculating an x value that is mapped from the start of
our graph area to the end (0 to dimensions.width). This evenly spaces our x values.
The y value is calculating the top of the graph (dimensions.y + dimensions.height).

We then print the labels to the screen with:� �
labelFont.drawString(ofToString(dataPoints[i].year), x, y + 20);� �
So this selects the font (labelFont.) writes to the screen (drawString) converts the data
to a string variable type (ofToString) and then takes the year from each line of the
vector (dataPoints[i].year) and positions it at the x and (y+20) calculated.

Lastly we draw some grid lines at each x value from the top of the graph (y) to the
bottom of the graph (dimensions.height).

We add y axis labels using this code:� �
for (int i = 0; i <= (int)maxValue; i++){

if (i % 1000000 == 0){
float x = dimensions.x;
float y = dimensions.y + ofMap(i, 0, maxValue,

dimensions.height, 0);

ofSetColor(90,90,90);
labelFont.drawString(ofToString(i), x - 30, y + 5);
ofLine(x,y, x-5,y);

}
}� �

152

8.2 Working with data files in OpenFrameworks

Here we have a for loop generating values for i that range from 0 to maxValue. Similarly,
the if statement will only generate ticks and labels for every 1000000 of these values.
What interval is chosen for this statement will depend on the range of the data. As
we are dealing with population data, we will choose to have a label at intervals of 1
million. This time y values are mapped from 0 to the height of the graph so they are
spread evenly. And then text and a line is drawn using the same functions as on the x
axis.

Step 6 Interact.

Finally we can add interactivity by creating clickable tabs that will switch between the
different datasets in our file. This section turns our code into a state machine, where
we define a variable called ‘which’ which is toggled between the values 0,1 and 2. The
value of ‘which’, dictates what dataset will be displayed.

In testApp.h, declare which:� �
int which;� �
Then insert this block of code to the mousePressed part of the openFrameworks tem-
plate. These conditionals define regions around the title labels and turns them into
buttons. When the button is clicked, ‘which’ changes state to the value shown.� �
void testApp::mousePressed(int x, int y, int button){

ofRectangle rect = font.getStringBoundingBox“(”NewYork,
dimensions.x, dimensions.y-15);
if (rect.inside(ofPoint(x,y))){

which = 0;
}

rect = font.getStringBoundingBox“(”Louisiana, dimensions.x + 80,
dimensions.y-15);

if (rect.inside(ofPoint(x,y))){
which = 1;

}

rect = font.getStringBoundingBox“(”Alabama, dimensions.x + 160,
dimensions.y-15);

if (rect.inside(ofPoint(x,y))){
which = 2;

}� �
Finally we must return to void testApp::draw() and make some changes. In the for loop
where we draw the data points we change from this:� �

for (int i = 0; i < dataPoints.size(); i++){

153

8 Information Visualization Chapter

float x = dimensions.x + ofMap(dataPoints[i].year, minYear,
maxYear, 0,dimensions.width);

float y = dimensions.y + ofMap(dataPoints[i].ny, 0,
maxValue, dimensions.height, 0);

ofCircle(x,y, 2);
}� �

to this:� �
for (int i = 0; i < dataPoints.size(); i++){

float value;
if (which == 0) value = dataPoints[i].ny;
if (which == 1) value = dataPoints[i].lou;
if (which == 2) value = dataPoints[i].ala;

float x = dimensions.x + ofMap(dataPoints[i].year, minYear,
maxYear, 0,dimensions.width);

float y = dimensions.y + ofMap(value, 0, maxValue,
dimensions.height, 0);

ofCircle(x,y, 2);
}� �

We have created a new float ‘value’ to hold each data point. Depending on the value
of ‘which’, value is assigned data from one of the three data sets in the tsp file.

Finally the last step here is to draw the titles to the screen which is done by adding
the last block of code underneath the for loop we just changed.� �

if (which == 0) ofSetColor(180,90,90);
else ofSetColor(90,90,90);
font.drawString("Milk", dimensions.x, dimensions.y-15);

if (which == 1) ofSetColor(180,90,90);
else ofSetColor(90,90,90);
font.drawString("Tea", dimensions.x + 80, dimensions.y-15);

if (which == 2) ofSetColor(180,90,90);
else ofSetColor(90,90,90);
font.drawString("Coffee", dimensions.x + 160,

dimensions.y-15);� �

154

8.3 More Useful functions for working with data

8.3 More Useful functions for working with data

8.3.1 Conversion functions (ofSplitString, ofToString, ofToInt)

Conversion functions enable the manipulation of each line of data in the buffer. They
allow each line to be split and for parts of it to be placed into string or integer variables.� �
ofSplitString(line, “\”t);� �
This function splits a string at a specified character. It has two arguments, the first is
the name of the string to be split and the second is the character at which it is to be
split. (indicates split at a tab)� �
string ofToString(integer, value);� �
ofToString object takes a number and turns it into a string representation of that num-
ber. The first argument is the integer to be transformed and the second indicates to
how many decimals places you want to use. If you do not specify the second value,
then the default value used is 7.� �
ofToInt(const string &intString);
ofToInt(string);� �
Similar to the previous, this object converts string or a string representation into an
actual integer variable.� �
ofToFloat(const string &intString);
ofToFloat(string);� �
This object converts another variable type into an a float variable.

8.4 Working with APIs

8.4.1 What are APIs?

An API is an Application Programming Interface. This means it is a software to software
interface allowing one piece of software to interact automatically with another online
software. It takes the form of a set of instructions for how a program can be designed
to interface with the online service. Every API is different with some being very well
documented while others are not.
You can write programs in OpenFrameworks so that data an be pulled from an API
automatically and used in your sketch. For example if we want to be able to pull
data from the New York Times API we would inspect the instructions for doing so here:
http://developer.nytimes.com/docs.

155

8 Information Visualization Chapter

8.5 Further resources

JSON validation tools like: http://jsonlint.com/

8.6 References

Fry, B. (2008). Visualizing Data, O’Reilly Media. Ackoff, R. L. (1989). From Data to Wisdom.
Journal of Applied Systems Analysis, 16, 3–9.

156

9 Experimental Game Development in
openFrameworks

by Phoenix Perry¹ and Jane Friedhoff²

Game developers are, in greater and greater numbers, turning to openFrameworks’
creative coding toolkit to develop their games. Unlike platforms like Unity, GameMaker,
and Construct2, oF was not specifically developed for game makers. However, oF’s
ability to port to mobile, manipulate video, utilize camera input, support generative
graphics, and hook in with devices like Arduino and Kinect (among other features)
makes it a very attractive option for developers who want to be able to rapidly produce
compelling, unique games.

9.0.1 Popular games in open frameworks

In this chapter, we’ll learn about game development in openFrameworks. We’ll cover
what goes into making a game, as well as how to code a simple space shooter. Finally,
we’ll put an experimental oF twist on our game by implementing OSC functionality,
which will allow you to alter the difficulty of the game live—while a player is playing it.

Ready? Let’s go!

9.1 How do game developers actually make games?

There are as many ways to make games as there are game developers. However, many
developers follow an iterative process: that is, adding a single component, testing it,
adding an additional component, testing it again, and so on. Regardless of the platform,
this method allows game developers to quickly figure out what parts of the initial idea
are worth keeping and rapidly test additions they think might be interesting–without
having to risk wasting time on building out a complete game that, in retrospect, isn’t
compelling.

This iterative process can be done digitally or physically. Paper prototyping is the pro-
cess of testing mechanics and interactions with paper models and analogs. Although

¹http://www.phoenixperry.com
²janefriedhoff.com

157

http://www.phoenixperry.com
janefriedhoff.com

9 Experimental Game Development in openFrameworks

Figure 9.1: Spell Tower by Zach Gage

158

9.2 So what is OSC, anyway?

Figure 9.2: Particle Mace by Andy Wallace

these paper prototypes don’t necessarily look like the final game, they can be mocked
up quickly and thrown away cheaply, allowing developers to experiment with core me-
chanics more rapidly than they could with code. For example, a puzzle game’s board
and pieces can likely be mocked up with paper and dice more quickly than it can be
implemented in even a basic mobile app. When a developer makes a digital prototype,
or one made with code, they will similarly typically start by refining game mechanics,
keeping assets rough until they get closer to the end. Finally, developers enter the
long process of tuning their game, tweaking various parameters about the game until
it feels just right.

We’re going to use openFrameworks to play with the final step of this process. In the
game we’re making, we’re not going to settle on one set of parameters that stay static
from game to game. We’re going to use openFrameworks’ OSC library to allow us to
communicate wirelessly from another device (e.g. a smartphone or table) so we can
tune those parameters live, giving our players experiences tailored just for them.

9.2 So what is OSC, anyway?

OSC, or Open Sound Control, came about as an advancement to MIDI, so let’s talk about
MIDI first. MIDI is a data protocol that sends and receives information between devices,
typically electronic musical instruments. MIDI is what allowed things like keyboards
and drum machines to fire in sync. If you’ve heard pop music, you’ve heard MIDI in
action.

159

9 Experimental Game Development in openFrameworks

Figure 9.3: Eliss by Steph Thirion

Figure 9.4: Scream Em Up by Jane Friedhoff

160

9.3 Our basic game–& making it not-so-basic

MIDI has data channels, on which you can send or receive single messages, or events.
Programmers could associate these MIDI events with actions that their electronic in-
struments could take. For example, you could set up your keyboard to send data on
channel 1, and receive data on MIDI channel 2. More specifically, you could program
a specific key (say, the ‘a’ key) to send out a MIDI event on channel 1. If your drum
machine is set up to receive on channel 1, it will receive that message and perform the
appropriate action (e.g. playing). A pretty cool system, but one that was limited by its
pre-defined and discrete message types.

As time advanced, so did computers and the speed of data transfers, leading us to
OSC. OSC was designed to allow for more expressive performance data, with different,
flexible kinds of messages sent over networks. OSC is a thin layer on top of the UDP
protocol, and allows users to send information over networks just by specifying the
network address and the incoming and outgoing ports. (UDP is used frequently in
games, and it is possible to use both of these protocols at the same time in the same
code base with no issues.)

OSC messages consist of the following:

• An address pattern. This is a hierarchical name space, and looks a bit like a Unix
filesystem or URL (e.g. /Address1). These patterns can effectively be anything
you want (e.g. /EnemySpeed)–think of them as names for what you send.

• A Type tag string. This simply represents the kind of data being sent (e.g. int,
string).

• Arguments. The actual value that is being transmitted (e.g. 6, "Hello world",
etc.).

There are plenty of inexpensive apps for smartphones and tablets that provide cus-
tomizable GUIs (complete with buttons, sliders, etc.) for sending different kinds of
MIDI messages. Download one (we like TouchOSC) so we have something to send our
messages with. With this in mind, let’s start making our game!

9.3 Our basic game–& making it not-so-basic

OpenFrameworks handles OSC as an included addon, so our first step will be to run
the project generator and create a project with the OSC addon. (If you haven’t had a
chance to read about addons, now would be a good time to jump over to [here] and
do just that!) Launch the project generator, then, in the main menu, click the word
“Addons.” A popup will appear. Select ofxOsc and then click back. Now, next to the
word Addons, you should see ofxOsc. Press “generate”. When it completes the project
creation process, close the generator and open up the project in either Visual Studio
or Xcode. The project will be set up in your myApps folder. Open it now.

Here’s what our game will have:

161

9 Experimental Game Development in openFrameworks

• A player, who has an on-screen position, a movement speed, and an image to
represent it

• Some enemies, who have an on-screen position, a movement speed (with the
horizontal value based on a sine wave), an image to represent them, and an
interval to keep track of when they can shoot next

• A level controller, which has an interval to keep track of when an enemy should
be spawned next

• Bullets (for the player and the enemies), which have an on-screen position, im-
ages to represent them, a way to keep track of where they come from (player or
enemy), and a speed

• Bonus lives, which have an on-screen position, an image to represent them, and
a speed

Figure 9.5: Space Game in action!

With all that written out, let’s use OSC to affect the following:

• The horizontal movement of our enemies–whether they move in a more exagger-
ated sin wave, or whether they move in more of a straight line

• The frequency with which our enemies shoot
• The frequency with which our level controller spawn enemies
• Whether a life bonus is on screen or not

These three parameters will allow the developer to, second-by-second, tailor the diffi-
culty of the game to the individual playing it.

Let’s start with our testApp. There are a few things we definitely know we’ll want classes
for, so make corresponding .h and .cpp files for Player, Bullet, Life, Enemy, and LevelCon-

162

9.3 Our basic game–& making it not-so-basic

troller. Remember to #include "ofMain.h" in each of those classes, and to include
the .h file of each of those classes in testApp.h.

9.3.1 Gamestates

First let’s create the basic structure of our game. Games typically have at least three
parts: a start screen, the game itself, and an end screen. We need to keep track of
which section of the game we’re in, which we’ll do using a variable called a game state.
In this example, our game state variable is a string, and the three parts of our game
are "start", "game", and "end". Let’s add a score and a player at this point as well.� �
string game_state;
int score;
Player player_1;� �
We’ll then divide up testApp’s update() and draw() loops between those game states:� �
//--
void testApp::update(){

if (game_state == "start") {

} else if (game_state == "game") {
} else if (game_state == "end") {

}
}
//--
void testApp::draw(){

if (game_state == "start") {
} else if (game_state == "game") {
} else if (game_state == "end") {

}
}� �
Let’s set the initial value of game_state to "start" right when the app begins.� �
//--
void testApp::setup(){

game_state = "start";
score = 0;

}� �
Finally, let’s make sure that we canmove forward from the start screen. In this example,
when the player is on the start screen and releases the space key, they’ll be taken to
the game.

163

9 Experimental Game Development in openFrameworks

� �
//--
void testApp::keyReleased(int key){

if (game_state == "start") {
game_state = "game";

} else if (game_state == "game") {
// blank for now

}
}� �
9.3.2 Player movement

Great! Let’s move onto our player. Our player’s class looks like this:� �
class Player {
public:

ofPoint pos;
float width, height, speed;
int lives;

bool is_left_pressed, is_right_pressed, is_down_pressed, is_up_
pressed;

void setup(ofImage * _img);
void update();
void draw();
void shoot();

void calculate_movement();

bool check_can_shoot();

ofImage * img;

};� �
Taking this one step at a time:

• Our player’s position will be stored in an ofPoint called pos. ofPoints are handy
datatypes that contain x and y values, letting us access our player’s position
through pos.x and pos.y.

• Our player will have width, height, and speed variables (which we’ll use for
collision detection and movement, respectively).

• Our player will have an integer number of lives (since it wouldn’t make any sense
for them to have 4.33333333333 lives).

164

9.3 Our basic game–& making it not-so-basic

• Our player will keep track of what movement keys are currently pressed in sepa-
rate booleans.

• Our player will have setup, update, draw, shoot, and calculate_movement
methods.

• Finally, our player will have a pointer to the image we’re using for the player.

You may be wondering why we’re using all these booleans–why not just check and see
which keys are pressed?

The problem is that, in openFrameworks, keyPressed() does not return all the keys
currently being pressed–just the last key that was pressed. That means that if the
player presses up and left (intending to move diagonally), openFrameworks will only
report one of the keys being pressed. You can try printing out the result of keyPressed
to see this in action. What we’ll do to avoid this is instead base the player’s movement
on the booleans we wrote earlier. If the player presses a certain key, that boolean will
be true; if they release that key, that boolean will be false. That way, if the player
presses up and left, we’ll report up and left as being true until those keys are released.

Here’s what our new keyPressed() and keyReleased() functions look like:� �
//--
void testApp::keyPressed(int key){

if (game_state == "game") {
if (key == OF_KEY_LEFT) {

player_1.is_left_pressed = true;
}

if (key == OF_KEY_RIGHT) {
player_1.is_right_pressed = true;

}

if (key == OF_KEY_UP) {
player_1.is_up_pressed = true;

}

if (key == OF_KEY_DOWN) {
player_1.is_down_pressed = true;

}
}

}
//--
void testApp::keyReleased(int key){

if (game_state == "start") {
game_state = "game";

} else if (game_state == "game") {
if (key == OF_KEY_LEFT) {

player_1.is_left_pressed = false;

165

9 Experimental Game Development in openFrameworks

}

if (key == OF_KEY_RIGHT) {
player_1.is_right_pressed = false;

}

if (key == OF_KEY_UP) {
player_1.is_up_pressed = false;

}

if (key == OF_KEY_DOWN) {
player_1.is_down_pressed = false;

}
}

}� �
Add ofImage player_image to testApp.h, then load the player’s image and instanti-
ate the player in testApp’s setup():� �
void testApp::setup(){

game_state = "start";
player_image.loadImage("player.png");

player_1.setup(&player_image);
}� �
Finally, update and draw your player in the appropriate part of testApp::update()
and testApp::draw():� �
//--
void testApp::update(){

if (game_state == "start") {

} else if (game_state == "game") {
player_1.update();

}
}

//--
void testApp::draw(){

if (game_state == "start") {

} else if (game_state == "game") {
player_1.draw();

} else if (game_state == "end") {

}
}� �
166

9.3 Our basic game–& making it not-so-basic

You should have a player who moves around on-screen. Sweet! ###Player bullets

Let’s make our bullets next. In order to have a variable number of bullets on screen
at a time, we need to add a vector<Bullet> bullets; to testApp.h. Let’s also create
a void update_bullets(); function, which will update our vector of bullets (and,
shortly, trigger the check for bullet collisions). We also want our player and enemy
bullets to look different, so we’ll add ofImage enemy_bullet_image; and ofImage
player_bullet_image; to our testApp.h file.

Our bullet class will look a lot like the player class, having a position, speed, width,
pointer to an image, and various functions. The big difference is that the bullets will
keep track of who they came from (since that will affect who they can hurt and which
direction they move).� �
class Bullet {
public:

ofPoint pos;
float speed;
float width;
bool from_player;

void setup(bool f_p, ofPoint p, float s, ofImage * bullet_image);
void update();
void draw();

ofImage * img;
};� �
Our Bullet.cpp will look like this:� �
void Bullet::setup(bool f_p, ofPoint p, float s, ofImage * bullet_

image) {
from_player = f_p;
pos = p;
speed = s + 3;
img = bullet_image;
width = img->width;

}
void Bullet::update() {

if (from_player) {
pos.y -= speed;

} else {
pos.y += speed;

}
}
void Bullet::draw() {

img->draw(pos.x - width/2, pos.y - width/2);

167

9 Experimental Game Development in openFrameworks

}� �
Again, this is much like the code for the player. The two differences are:

• We keep track of where the bullet comes from, and alter the code based on that
variable (meaning we can keep all the bullets in the same vector)

• When instantiating a bullet, we check to see the position of the shooter, as well
as the shooter’s current speed (so it will always move faster than the thing that
shot it)

Now that our bullet class is implemented, we can go back to testApp::setup()
and add in enemy_bullet_image.loadImage("enemy_bullet.png"); and player_
bullet_image.loadImage("player_bullet.png"); right underneath where we
loaded in our player_image. For now, our update_bullets() function will call
the update() function in each bullet, and will also get rid of bullets that have flown
offscreen in either direction.� �
//--
void testApp::update_bullets() {

for (int i = 0; i < bullets.size(); i++) {
bullets[i].update();
if (bullets[i].pos.y - bullets[i].width/2 < 0 ||

bullets[i].pos.y + bullets[i].width/2 > ofGetHeight()) {
bullets.erase(bullets.begin()+i);

}
}
// ’well call a collision check function here shortly

}� �
Our testApp::update() and testApp::draw() will now look like this:� �
//--
void testApp::update(){

if (game_state == "start") {

} else if (game_state == "game") {
player_1.update();
update_bullets();

}
}
//--
void testApp::draw(){

if (game_state == "start") {

} else if (game_state == "game") {
ofBackground(0,0,0);
player_1.draw();

168

9.3 Our basic game–& making it not-so-basic

for (int i = 0; i < bullets.size(); i++) {
bullets[i].draw();

}
} else if (game_state == "end") {

}
}� �
Finally, let’s add an if-statement to our keyPressed() so that when we press the space-
bar during the game, we spawn a player bullet:� �
//--
void testApp::keyPressed(int key){

if (game_state == "game") {
if (key == OF_KEY_LEFT) {

player_1.is_left_pressed = true;
}

if (key == OF_KEY_RIGHT) {
player_1.is_right_pressed = true;

}

if (key == OF_KEY_UP) {
player_1.is_up_pressed = true;

}

if (key == OF_KEY_DOWN) {
player_1.is_down_pressed = true;

}

if (key == ' ') {
Bullet b;
b.setup(true, player_1.pos, player_1.speed, &player_

bullet_image);
bullets.push_back(b);

}
}

}� �
Remember, the first parameter in the bullet’s setup is whether it comes from the player
(which, in this case, is always true). Run your app and fly around shooting for a bit to
see how it feels.

9.3.3 Adding adversaries

Let’s move on to our enemy. This process should be familiar by now. Add an
ofImage enemy_image; and a vector<Enemy> enemies; to testApp.h. Addition-

169

9 Experimental Game Development in openFrameworks

ally, add float max_enemy_amplitude; and float max_enemy_shoot_interval;
to testApp.h–these are two of the enemy parameters we’ll affect with OSC. Your
enemy class will look like this:� �
class Enemy {
public:

ofPoint pos;
float speed;
float amplitude;
float width;

float start_shoot;
float shoot_interval;

void setup(float max_enemy_amplitude, float max_enemy_shoot_
interval, ofImage * enemy_image);

void update();
void draw();
bool time_to_shoot();

ofImage * img;
};� �
Our enemy’s horizontal movement will be shaped by the values fed to a sine wave
(which we’ll see in a moment). We’ll keep track of our amplitude variable (so differ-
ent enemies can have different amplitudes). We’ll also want to keep track of whether
enough time has passed for this enemy to shoot again, necessitating the start_shoot
and shoot_interval variables. Both of these variables will actually be set in our setup()
function. Finally, we’ll have a boolean function that will tell us whether the enemy can
shoot this frame or not. Our enemy class will look like this:� �
void Enemy::setup(float max_enemy_amplitude, float max_enemy_shoot_

interval, ofImage * enemy_image) {
pos.x = ofRandom(ofGetWidth());
pos.y = 0;
img = enemy_image;
width = img->width;
speed = ofRandom(2, 7);
amplitude = ofRandom(max_enemy_amplitude);
shoot_interval = ofRandom(0.5, max_enemy_shoot_interval);
start_shoot = ofGetElapsedTimef();

}
void Enemy::update() {

pos.y += speed;
pos.x += amplitude * sin(ofGetElapsedTimef());

}
void Enemy::draw() {

img->draw(pos.x - width/2, pos.y - width/2);
}

170

9.3 Our basic game–& making it not-so-basic

bool Enemy::time_to_shoot() {
if (ofGetElapsedTimef() - start_shoot > shoot_interval) {

start_shoot = ofGetElapsedTimef();
return true;

}
return false;

}� �
In update, we’re using the current elapsed time in frames to give us a constantly in-
creasing number to feed to the sine function, which in turn returns a value between
-1 and 1. We multiply it by the amplitude of the wave, making this curve more or less
exaggerated.

In time_to_shoot(), we check to see whether the difference between the current time
and the time this enemy last shot is greater than the enemy’s shooting interval. If it is,
we set start_shoot to the current time, and return true. If not, we return false. Let’s
integrate our enemies into the rest of our testApp.cpp:� �
//--
void testApp::setup(){

game_state = "start";

max_enemy_amplitude = 3.0;
max_enemy_shoot_interval = 1.5;

enemy_image.loadImage("enemy0.png");
player_image.loadImage("player.png");
enemy_bullet_image.loadImage("enemy_bullet.png");
player_bullet_image.loadImage("player_bullet.png");

player_1.setup(&player_image);
}
//--
void testApp::update(){

if (game_state == "start") {

} else if (game_state == "game") {
player_1.update();
update_bullets();

for (int i = 0; i < enemies.size(); i++) {
enemies[i].update();
if (enemies[i].time_to_shoot()) {

Bullet b;
b.setup(false, enemies[i].pos, enemies[i].speed,

&enemy_bullet_image);
bullets.push_back(b);

}
}

171

9 Experimental Game Development in openFrameworks

} else if (game_state =="draw") {
}

}
//--
void testApp::draw(){

if (game_state == "start") {
} else if (game_state == "game") {

ofBackground(0,0,0);
player_1.draw();
for (int i = 0; i < enemies.size(); i++) {

enemies[i].draw();
}
for (int i = 0; i < bullets.size(); i++) {

bullets[i].draw();
}

} else if (game_state == "end") {
}

}� �
9.3.4 Collisions

Let’s implement our bullet collision checks. Add a void check_bullet_collisions();
to your testApp.h, then write the following function:� �
//--
void testApp::check_bullet_collisions() {

for (int i = 0; i < bullets.size(); i++) {
if (bullets[i].from_player) {

for (int e = enemies.size()-1; e >= 0; e--) {
if (ofDist(bullets[i].pos.x, bullets[i].pos.y,

enemies[e].pos.x, enemies[e].pos.y) <
(enemies[e].width + bullets[i].width)/2) {
enemies.erase(enemies.begin()+e);
bullets.erase(bullets.begin()+i);
score+=10;

}
}

} else {
if (ofDist(bullets[i].pos.x, bullets[i].pos.y, player_

1.pos.x, player_1.pos.y) < (bullets[i].width+player_
1.width)/2) {
bullets.erase(bullets.begin()+i);
player_1.lives--;

if (player_1.lives <= 0) {
game_state = "end";

}

172

9.3 Our basic game–& making it not-so-basic

}
}

}
}� �
This code is a bit nested, but actually pretty simple. First, it goes through each bullet in
the vector and checks to see whether it’s from the player. If it’s from the player, it starts
a for-loop for all the enemies, so we can compare the player bullet position against all
the enemy positions. We use ofDist() to see whether the distance between a given
bullet and a given enemy is less than the sum of their radii–if it is, they’re overlapping.
If a bullet is not from the player, the function does a distance calculation against the

player, to see whether a given enemy bullet and the player are close enough to count
it as a hit. If there is a hit, we subtract a player’s life and erase that bullet. If the player
has less than or equal to 0 lives, we change the game state to the end.

Don’t forget to call check_bullet_collisions() as part of update_bullets():� �
//--
void testApp::update_bullets() {

for (int i = 0; i < bullets.size(); i++) {
bullets[i].update();
if (bullets[i].pos.y - bullets[i].width/2 < 0 ||

bullets[i].pos.y + bullets[i].width/2 > ofGetHeight()) {
bullets.erase(bullets.begin()+i);

}
}
check_bullet_collisions();

}� �
9.3.5 Our game’s brain

Great! Except… we don’t have any enemies yet! Definitely an oversight. This is where
our level controller comes in. Add LevelController level_controller; to your
testApp.h. Our level controller class is super-simple:� �
class LevelController {
public:

float start_time;
float interval_time;

void setup(float e);
bool should_spawn();

};� �
As you might guess, all it’ll really do is keep track of whether it’s time to spawn another
enemy yet.

173

9 Experimental Game Development in openFrameworks

Inside our LevelController.cpp:� �
void LevelController::setup(float s) {

start_time = s;
interval_time = 500;

}
bool LevelController::should_spawn() {

if (ofGetElapsedTimeMillis() - start_time > interval_time) {
start_time = ofGetElapsedTimeMillis();
return true;

}
return false;

}� �
When we set up our level controller, we’ll give it a starting time. It’ll use this time as a
baseline for the first enemy spawn. The should_spawn code should look familiar from
the enemy bullet section.

We’ll wait to set up our level controller until the game actually starts–namely, when
the game state changes from "start" to "game".� �
void testApp::keyReleased(int key){

if (game_state == "start") {
game_state = "game";
level_controller.setup(ofGetElapsedTimeMillis());

}

...
}� �
Next we’ll integrate it into our testApp::update():� �
//--
void testApp::update(){

if (game_state == "start") {

} else if (game_state == "game") {
player_1.update();
update_bullets();

for (int i = 0; i < enemies.size(); i++) {
enemies[i].update();
if (enemies[i].time_to_shoot()) {

Bullet b;
b.setup(false, enemies[i].pos, enemies[i].speed,

&enemy_bullet_image);
bullets.push_back(b);

}
}

174

9.3 Our basic game–& making it not-so-basic

if (level_controller.should_spawn() == true) {
Enemy e;
e.setup(max_enemy_amplitude, max_enemy_shoot_interval,

&enemy_image);
enemies.push_back(e);

}
}

}� �
Awesome! We’re close to done!

9.3.6 Bonus lives

Before we finish, let’s add in our last OSC feature: the ability to throw in bonus lives on
the fly. Add vector<Life> bonuses; and ofImage life_image; to your testApp.h.
To keep our code modular, let’s also add void update_bonuses(); in the same place.
Don’t forget to life_image.loadImage("life_image.png"); in testApp::setup().
Life.h should look like this:� �
class Life {
public:

ofPoint pos;
float speed;
float width;

ofImage * img;

void setup(ofImage * _img);
void update();
void draw();

};� �
And it’ll function like this–a lot like the bullet:� �
void Life::setup(ofImage * _img) {

img = _img;
width = img->width;
speed = 5;
pos.x = ofRandom(ofGetWidth());
pos.y = -img->width/2;

}
void Life::update() {

pos.y += speed;
}
void Life::draw() {

img->draw(pos.x - img->width/2, pos.y - img->width/2);

175

9 Experimental Game Development in openFrameworks

}� �
Our update_bonuses() function works a lot like the bullet collision function:� �
//--
void testApp::update_bonuses() {

for (int i = bonuses.size()-1; i > 0; i--) {
bonuses[i].update();
if (ofDist(player_1.pos.x, player_1.pos.y, bonuses[i].pos.x,

bonuses[i].pos.y) < (player_1.width + bonuses[i].width)/2)
{
player_1.lives++;
bonuses.erase(bonuses.begin() + i);

}

if (bonuses[i].pos.y + bonuses[i].width/2 > ofGetHeight()) {
bonuses.erase(bonuses.begin() + i);

}
}

}� �
All that’s left for our lives functionality is to alter testApp::update() and
testApp::draw().� �
//--
void testApp::update(){

if (game_state == "start") {

} else if (game_state == "game") {
player_1.update();
update_bullets();
update_bonuses();

for (int i = 0; i < enemies.size(); i++) {
enemies[i].update();
if (enemies[i].time_to_shoot()) {

Bullet b;
b.setup(false, enemies[i].pos, enemies[i].speed,

&enemy_bullet_image);
bullets.push_back(b);

}
}

if (level_controller.should_spawn() == true) {
Enemy e;
e.setup(max_enemy_amplitude, max_enemy_shoot_interval,

&enemy_image);
enemies.push_back(e);

}

176

9.3 Our basic game–& making it not-so-basic

}
}
//--
void testApp::draw(){

if (game_state == "start") {
start_screen.draw(0,0);

} else if (game_state == "game") {
ofBackground(0,0,0);
player_1.draw();
draw_lives();

for (int i = 0; i < enemies.size(); i++) {
enemies[i].draw();

}

for (int i = 0; i < bullets.size(); i++) {
bullets[i].draw();

}

for (int i = 0; i < bonuses.size(); i++) {
bonuses[i].draw();

}
} else if (game_state == "end") {

}
}� �
9.3.7 Let’s get visual

Finally, we’ve been a bit stingy with visual feedback, so let’s add in a start screen, a
score, a visual representation of the lives left, and an end screen. Add ofImage start_
screen;, ofImage end_screen;, void draw_lives();, and void draw_score(); to
testApp.h.
Change testApp::setup() to load in those assets:� �
//--
void testApp::setup(){

...
player_1.setup(&player_image);
start_screen.loadImage("start_screen.png");
end_screen.loadImage("end_screen.png");
score_font.loadFont("Gota_Light.otf", 48);

}� �
Draw them in the appropriate game states using start_screen.draw(0, 0); and
end_screen.draw(0, 0);.

177

9 Experimental Game Development in openFrameworks

Add in the last two functions:� �
//--
void testApp::draw_lives() {

for (int i = 0; i < player_1.lives; i++) {
player_image.draw(ofGetWidth() - (i * player_image.width) -

100, 30);
}

}
//--
void testApp::draw_score() {

if (game_state == "game") {
score_font.drawString(ofToString(score), 30, 72);

} else if (game_state == "end") {
float w = score_font.stringWidth(ofToString(score));
score_font.drawString(ofToString(score), ofGetWidth()/2 -

w/2, ofGetHeight()/2 + 100);
}

}� �
By using stringWidth(), we can calculate the width of a string and shift the text over–
handy for centering it.

All that’s left after that is to call draw_score(); and draw_lives(); during the
testApp::draw()’s game state, and to call draw_score(); during the end state.

Congrats–you made a game!

9.3.8 Linking oF and OSC

Now let’s add in the OSC functionality. We are going to set our application up to receive
messages from our iPad and then make changes in real-time while our game is running
to test some possible player scenarios. As mentioned before, this can trump going into
your application and making manual changes because you skip the need to recompile
your game and playtest live. In fact, you can use Touch OSC to even open up new ways
to interact with your players.

Touch OSC is used to switch game levels on the fly and to run challenges.

To accomplish this we are going to create a new class that will contain our OSC func-
tionality. Create a .cpp and .h file for this class now and name it LiveTesting. Open
LiveTesting.h And let’s add the line to import the OSC at the top of your file after
your preprocessor directives and also a line for using iostream for testing purposes.
As we add the code we will explain in inline in the code comments.

Add the following:

178

9.3 Our basic game–& making it not-so-basic

Figure 9.6: Nightgame developer interface by Phoenix Perry

179

9 Experimental Game Development in openFrameworks

� �
#include <iostream>
#include "ofxOsc.h"� �
Next let’s set up all of our variables we are going to use to receive OSC data and map
it to in game values. Add the following code into your class.� �
class LiveTesting
{
public:

LiveTesting();
//a default c++ constructor
void setup(); //for setup
void update(); //for updating

ofxOscSender sender;
//you can set up a sender!
//We are going to use this network connection to give us
//some visual feedback of our current game values.

ofxOscReceiver receiver;
//this is the magic! This is the port on which your game gets

incoming data.

ofxOscMessage m;
//this is the osc message your application gets from your device.

//these are the values we will be tweaking during testing
float max_enemy_amplitude;
int interval_time;
float max_enemy_shoot_interval;
bool triggerBonus;

};� �
Now let’s jump over to the LiveTesting.cpp file. In this file we are going to set up our
network address and the ports we are sending and receiving data on as the first order
of business. However, to go any further we are going to need to do some housekeeping
and install additional software. For OSC to work it will need a local wifi network to send
the messages across. Note this tactic may not work for a network outside of your own
because often a sysadmin will stop this kind of traffic from being transmitted on a very
public network. We suggest brining an Airport Express or similar with you so you can
quickly and wirelessly establish a local network for playtesting.

For the purpose of this chapter and to allow us to create an experience that will work
on both Android and iOS we are going to use a piece of software called TouchOSC from
this URL: http://hexler.net/software/touchosc

180

9.3 Our basic game–& making it not-so-basic

The desktop editor software is free however the matching software for your device will
be $4.99. Get both now. As a mater of principle, we endorse building your own tools
and you could easily build a second oF project to be your OSC sender and receiver
on your mobile device. With that said, nothing beats TouchOSC for speed, ease of use
and complete, platform independent flexibility. If you are someone who often moves
between an iOS and Android device on both Windows and Mac, this tool will become
indispensible to you. As a games designer it can open up possibilities like changing
levels on the fly, updating game variables, adjusting for player feedback and adding
new features into and taking them out of your game as it’s running. We highly endorse
using it and support the continued advancement of the tool. You can also use it with
music production tools like Ableton Live and it comes with great presets for things
like DJing and mixing music live. Go to the app store of your device and purchase the
mobile version now if you would like to continue down this route.
After we get all of the tools downloaded and installed. Let’s start setting everything
up. You are going to need two bits of information. You are going to need to know the
IP address of your computer and the ip address of your laptop. If you are on a mac,
just open up your System Preferences. Go to the Network setting and click on your wifi
connection in the left sidebar. On the right side it will display your IP address. You
can also get this setting by opening up Terminal and entering in the command ifconfig.
Terminal will list of every network that’s a possible connection for your machine from
the past, even if it’s not currently active. For example, if you have ever connected your
phone, it will be in the list with some flag and listed as inactive. Look for the connection
that’s currently active. It will look something like this:� �
en1: flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu

1500
ether 60:33:4b:12:e5:3b
inet6 fe80::6233:4bff:fe12:e53b%en1 prefixlen 64 scopeid 0x5
inet 192.168.0.5 netmask 0xffffff00 broadcast 192.168.0.255
media: autoselect
status: active� �

The inet address is your current IP. On windows, open the charms bar. In search type
cmd and open the command prompt. Type in ipconfig. This information is much
clearer than the data dump from terminal. The connected listed as your Wireless LAM
adapter Wi-Fi will list your current IPV4 address. This is your IP address. Finally, obtain
your mobile device’s IP address as well from your device settings. Make a note of your
IPAddress for the next section.
At this point, go ahead and launch TouchOSC on your device and the Touch OSC desktop
editor on your computer. If you are on Windows, you will need to make sure you have
java installed first. Once the software is open, click the open icon in the top tool bar. In
the file containing the code for this chapter you will see a file called ofBook.touchosc.
We are going to make this interface now and deploy it to our phone. We will make this
interface to control these parameters in our game:

181

9 Experimental Game Development in openFrameworks

� �
//these are the values we will be tweaking during testing
float max_enemy_amplitude;
int interval_time;
float max_enemy_shoot_interval;
bool triggerBonus;� �

To build the app, let’s start by adding our first knob. Right click in the black empty
space to the right. Choose to make a rotaryH. Next make two labelH objects. The
first one will be the name of our knob. The second one will be for displaying the value
of the current variable in our game. Place one label above the knob and one below. It
should look like the below image:

Now look to the left side of the app. At this point, it’s time to set all of the values
this knob will be sending and what the labels will display. Let’s start with label1. We

182

9.3 Our basic game–& making it not-so-basic

will name our knob on screen to make things easier to read. The first value in our
game we want to control, level controller interval time, should be what this label reads
onscreen. Changing the name field in the app interface will do little. However, note
under the name field you can change the color of the label. For this example, use
yellow. Next, jump down to the next to last field on screen called Text. You will want
to set this to level controller interval time.

Moving on, select the knob. This one will require more set up because it will actually be
sending values to our game. Color it yellow first. In the dark grey OSC box set all of the
values we need to receive for the game. If auto is checked, uncheck it. Now customize
the text in that box to /game/interval_time. In the From fields set the parameters
to a range of values to try out in the game during a playtest. We will use from 0 to 300.
These two elements, the tag and the parameters will get packed up into a message and
sent over our OSC network to our game when values change.

The last thing to set up will be the bottom label to display what our interval variable
is currently set to in our running game. Select it. We will change the settings and the
address tag to reflect that it is not game data being sent to our game but rather data

183

9 Experimental Game Development in openFrameworks

being sent out of our game. Select the label on screen to pull up the parameters for it
on the right. In the darkened OSC box change the parameters to those below:

This is the pattern we are going to use for all of our knobs and labels. Essentially, the
pattern is

• Create 3 interface elements for each parameter

– A label for the name of the parameter you will be controlling
– An interface element like a knob to change it with
– An output label to display the current in game variable setting

Do this now for the other two knobs. The settings are below for each one.

Label / Knob Set 2

• Label H

– Color: orange
– Text: Max Enemy Shoot Interval

• Rotary H

– Color: orange
– OSC: /game/max_enemy_shoot_interval
– Value Range: From: 0 To: 1

• Label H

– Color: Orange
– OSC: /updatedVals/max_enemy_shoot_interval

Label / Knob Set 3

• Label H

– Color: Green

184

9.3 Our basic game–& making it not-so-basic

– Text: max enemy amplitude

• Rotary H

– Color: Green
– OSC: /game/max_enemy_amplitude
– Value Range: From: 0 To: 1

• Label H

– Color: Green
– OSC: /updatedVals/max_enemy_amplitude

Set 4

We are going to add one more but this one will be a Push Button verses a RotaryH.
Right click to create it just like the knob. Make that now and 2 labels. Here are the
settings:

• Label H

– Color: Pink
– Text: Trigger Bonus

• Push Button

– Color: Pink
– OSC: /game/triggerBonus
– From: 0 To: 1

• Label H

– Color: Pink
– OSC: /updatedVals/triggerBouns

Save your file to your hard drive desktop and name it PlaytestInterface. You are
done building your interface for play testing. Now let’s deploy it. On your mobile device,
launch Touch OSC. It will launch and open a settings screen.

This is when we need the network address of your computer we retrieved earlier. Under
Connections touch OSC: and set it to the IPAddress of your computer to link the two.
This should be something like 192.165.0.3

The ports should also get set. Tap each one an set them up to these values:� �
Port (outgoing) 8001
Port (incoming) 8000� �
Next tap on TouchOSC in the upper left corner of the app to go back to the settings.

185

9 Experimental Game Development in openFrameworks

Now click on Layout. Then tap Add. It will start to search for your computer. Switch
back over to your computer now and into the TouchOSC Editor. Press the green Sync
arrow.

Switch back to your device. You should see your computer listed under FOUND HOSTS.
Select it. It will pop back to the settings screen. Scroll down and find PlaytestInterface
in the list of interfaces. Select it and it will take you back to the main menu. Press
Done in the upper left corner and your interface will now launch. If you want to get
back to the settings screen at any point the white dot in the upper right hand corner
will return the user interface to that screen.

Finally, TouchOSC is set up. Let’s link it to our game and run our very first playtest. Go
back to the programming IDE. Open up LiveTesting.cpp. In our default constructor,
we will now set up our game to send and receive values over the network. To do this
we will need to know which Ip address and port on our device we will send to as well as
set up a port on our local computer’s network to receive incoming data. Your computer
will have only one IP address but it can send and receive data on thousands of ports.
While we aren’t going too deep into ports there, you can think of the IP address like
a boat pier. Lots of boats can be docked at a single pier. This is no different. Your
ports are your docks and your IP address is your pier. You can think of the data like
the people departing and arriving. You’ll need a separate port for each activity in this
scenario. If a port isn’t used by your operating system, you can send and receive data
there. We are going to use 8000 and 8001. The final thing to establish is the Address
Pattern. It will look like a file path and it will allow us to specify the address pattern
match our messages to their right values. Add this code:� �
#include "LiveTesting.h"

LiveTesting::LiveTesting(){

sender.setup("192.168.0.11", 8000);
//this is the ip address of your ipad/android and the port it

should be
//set to receive on

receiver.setup(8001);
/*this is the port you're game will receive data on.
For us this is the important one! Set your mobile device to send

on this port.*/

m.setAddress("/game");

186

9.3 Our basic game–& making it not-so-basic

/*This is OSC's URL like naming convention. You can use a root
url address like

structure and then everything under that address will be
accessible by that message.

It's very similar to a folder path on your hard drive. You can
think of the

game folder as your root directory and all the bits that are
/game/someOtherName are inside of it.*/

}� �
In the above code we simply set up our network address, incoming and out going ports
and created a default address pattern. From here we should be good to go to set up
the messages we’d like to send and receive in our code.

Let’s move on to the next major function we want to write. We need to run an update
function in this class to update every frame so we can make sure that if we move a
slider on our ipad that change becomes reflected within the game. Also, we might want
to send that value back out once we receive it so we can get some visual feedback on
our tablet to let us know what our current settings are.

Each time we make a change on our device, it will send over the updates to our code
via Touch OSC. We want to make sure we get all of the incoming messages that are
being sent so we will create a simple while loop. We will loop through the whole list
of messages that came into our game that frame and match it to the corresponding
variable in our game via if statements.� �

while (receiver.hasWaitingMessages()) {
//get the next message
ofxOscMessage m;
receiver.getNextMessage(&m);� �

Every incoming message will come with its own unique address tag and new argu-
ments. You can get access to a message’s address via the getAddress function. For
example,if(m.getAddress()== "/game/max_enemy_amplitude"), will test to see if
the message address is /game/max_enemy_amplitude. If it is, set the variable equal
to that value in your game’s codebase and they are linked together. Every swipe of the
knob will translate to direct changes in your game. We do this for every single value
we want to set.� �

if(m.getAddress() == "/game/max_enemy_amplitude")
{

max_enemy_amplitude = m.getArgAsFloat(0);

//these values send back to OSC to display the
//current settings for visual feedback
sendBack.addFloatArg(max_enemy_amplitude);
sendBack.setAddress("/updatedVals/max_enemy_amplitude");

187

9 Experimental Game Development in openFrameworks

sender.sendMessage(sendBack);

cout << max_enemy_amplitude << endl;
}� �

At the same time, we are also going to send those exact same values back out to our
device so we can see the numbers that the settings in our game are currently at. This
is handy for two reasons. One, you get visual feedback of the current variables values’
on your device. Two, if you happen to land on settings that feel right in your game, you
can take a screen cap on your device. After stopping the game, go back and change the
variables to match in your code and the next time you run your program, it will start
with those parameters.

To pack up all of the values in our current running game and send them back to the
device every frame we will create a variable of type ofxOscMessage called sendBack.
When we have a string match for the address in the ofxOscMessage m, we just copy the
arguments over to sendBack via the right function (in this case usually addFloatArg)
and set the address pattern using the setAddress function. Finally, we use the built
in sendMessage function to send the message out over OSC.

Here’s the complete code to add to your LiveTesting.cpp file� �
void LiveTesting::update()
{

//our simple while loop to make sure we get all of our messages
while (receiver.hasWaitingMessages()) {

//get the message, which will hold all of our arguments
inside of it.

//It's a collection of data!

ofxOscMessage m;
//pass a reference to that message to the receiver
//we set up above using the getNextMessage function in the

OSC add on.

receiver.getNextMessage(&m);

//this will be the message we send back from our game
//to our device letting it know what value we received
//from it and displaying that back to us so we know what our
//current game setting are at

ofxOscMessage sendBack;

//remember or address tags are unique.
//we set up the /game tag as our root address and each /

denotes a sub tag

188

9.3 Our basic game–& making it not-so-basic

//if theses strings are a match, we know the message that
came in is our

//amplitude

if(m.getAddress() == "/game/max_enemy_amplitude")
{

//this is critical.
//Each type must match if you want to be able to run

your code.
//We know the first argument in our array of messages
//will be a float if the above if statement evaluates to

true

max_enemy_amplitude = m.getArgAsFloat(0);

//now we are going to pack up a collection of data to
send back to

//our device. sendBack is also a collection of data we
//add arguments to.
//Add the value we set our amplitude to the message and

move on.

sendBack.addFloatArg(max_enemy_amplitude);
sendBack.setAddress("/updatedVals/max_enemy_amplitude");
sender.sendMessage(sendBack);

cout << max_enemy_amplitude << endl;
}

else if (m.getAddress() == "/game/interval_time")
{

//this is exactly the same as above.
//We just simply are testing to see if the address
//tag is this value and if so doing the exact
//process of setting our ingame value to match the value

of the
//incoming argument and sending back our interval_time

to our device.

interval_time = m.getArgAsInt32(0);

//send visual feedback
sendBack.addIntArg(interval_time);
sendBack.setAddress("/updatedVals/interval");
sender.sendMessage(sendBack);

}
else if (m.getAddress() == "/game/max_enemy_shoot_interval")
{

189

9 Experimental Game Development in openFrameworks

//again the same process of testing the address tag
max_enemy_shoot_interval = m.getArgAsFloat(0);

//send visual feedback
sendBack.addFloatArg(max_enemy_shoot_interval);
sendBack.setAddress("/updatedVals/max_enemy_shoot_

interval");
sender.sendMessage(sendBack);

}
else if (m.getAddress() == "/game/triggerBonus")
{

//and finally we rap it up this is last test.
triggerBonus = m.getArgAsInt32(0);
cout << triggerBonus << endl;
//send visual feedback
sendBack.addIntArg(triggerBonus);
sendBack.setAddress("/updatedVals/triggerBouns");
sender.sendMessage(sendBack);

}
}� �

You have reached the end of the tutorial. Now do a real testing session. Run the game
and have a friend play it while you change the knobs. Once you have settings you like,
quit the game and add those values into the code to make them permanent updates.

For a bonus challenge, find a few settings you like, and create a difficulty ramp for
game using those values of time.

9.3.9 Resouces

We’ve reached the end of the chapter but not the end of the journey. A few great
resources for independent games scene are listed here:
Come Out And Play³
Kill Screen⁴
Indiecade⁵
Babycastles⁶
Polygon⁷

³http://www.comeoutandplay.org/
⁴http://killscreendaily.com/
⁵http://www.indiecade.com
⁶http://www.babycastles.com
⁷http://www.polygon.com/

190

http://www.comeoutandplay.org/
http://killscreendaily.com/
http://www.indiecade.com
http://www.babycastles.com
http://www.polygon.com/

9.3 Our basic game–& making it not-so-basic

IDGA⁸
Game Dev Net⁹
Game Dev Stack Exchange¹⁰
Gamasutra¹¹
Digra¹²
Different Games¹³

9.3.10 About us

This chapter was written by two members of the Code Liberation Foundation¹⁴, Phoenix
Perry¹⁵ and Jane Friedhoff¹⁶. This organization teaches women to program games for
free. Featuring game art by Loren Bednar. We build community, create a safe spaces for
women who want to learn to program in a non-male dominated setting and generally
rock.

⁸http://www.igda.org/
⁹http://www.gamedev.net/page/index.html
¹⁰http://gamedev.stackexchange.com/
¹¹http://gamasutra.com/
¹²http://www.digra.org/
¹³http://www.differentgames.org/
¹⁴http://www.codeliberation.org
¹⁵http://www.phoenixperry.com
¹⁶janefriedhoff.com

191

http://www.igda.org/
http://www.gamedev.net/page/index.html
http://gamedev.stackexchange.com/
http://gamasutra.com/
http://www.digra.org/
http://www.differentgames.org/
http://www.codeliberation.org
http://www.phoenixperry.com
janefriedhoff.com

10 Image Processing and Computer Vision

By Golan Levin¹

Edited by Brannon Dorsey²

10.1 Preliminaries to Image Processing

10.1.1 Digital image acquisition and data structures

This chapter introduces techniques for manipulating (and extracting certain kinds of
information from) raster images. Such images are sometimes also known as bitmap
images or pixmap images, though we’ll just use the generic term image to refer to any
array (or buffer) of numbers that represenRat the color values of a rectangular grid
of pixels (“picture elements”). In openFrameworks, such buffers come in a variety of
flavors, and are used within (and managed by) a wide variety of convenient container
objects, as we shall see.

10.1.1.1 Loading and Displaying an Image

Image processing begins with, well, an image. Happily, loading and displaying an im-
age is very straightforward in OF. Let’s start with this tiny, low-resolution (12x16 pixel)
grayscale portrait of Abraham Lincoln:

Figure 10.1: Small Lincoln image

Below is a simple application for loading and displaying an image, very similar to the
imageLoaderExample in the OF examples collection. The header file for our program,
ofApp.h, declares an instance of an ofImage object, myImage:� �
// Example 1: Load and display an image.
// This is ofApp.h

¹http://www.flong.com/
²http://brannondorsey.com

193

http://www.flong.com/
http://brannondorsey.com

10 Image Processing and Computer Vision

#pragma once
#include "ofMain.h"

class ofApp : public ofBaseApp{
public:

void setup();
void draw();
ofImage myImage;

};� �
Below is our complete ofApp.cpp file. The Lincoln image is loaded from our hard drive
(once) in the setup() function; then we display it (many times per second) in our
draw() function. As you can see from the filepath provided to the loadImage() func-
tion, the program assumes that the image lincoln.png can be found in a directory called
“data” alongside your executable:� �
// Example 1: Load and display an image.
// This is ofApp.cpp

#include "ofApp.h"

void ofApp::setup(){
myImage.loadImage("lincoln.png");
myImage.setImageType(OF_IMAGE_GRAYSCALE);

}

void ofApp::draw(){
ofBackground(255);
ofSetColor(255);

int imgW = myImage.width;
int imgH = myImage.height;
myImage.draw(10, 10, imgW * 10, imgH * 10);

}� �
Compiling and running the above program displays the following canvas, in which this
(very tiny!) image is scaled up by a factor of 10, and rendered so that its upper left cor-
ner is positioned at pixel location (10,10). The positioning and scaling of the image are
performed by the myImage.draw() command. Note that the image appears “blurry”
because, by default, openFrameworks uses linear interpolation³ when displaying up-
scaled images.

If you’re new to working with images in OF, it’s worth pointing out that you should try
to avoid loading images in the draw() or update() functions, if possible. Why? Well,
reading data from disk is one of the slowest things you can ask a computer to do. In
many circumstances, you can simply load all the images you’ll need just once, when

³http://en.wikipedia.org/wiki/Linear_interpolation

194

http://en.wikipedia.org/wiki/Linear_interpolation

10.1 Preliminaries to Image Processing

Figure 10.2: Pixel data diagram

your program is first initialized, in setup(). By contrast, if you’re repeatedly loading an
image in your draw() loop — the same image, again and again, sixty times per second
— you’re hurting the performance of your app, and potentially even risking damage to
your hard disk.

10.1.1.2 Where (Else) Images Come From

In openFrameworks, raster images can come from a wide variety of sources, including
(but not limited to):

• an image file (stored in a commonly-used format like .JPEG, .PNG, .TIFF, or .GIF),
loaded and decompressed from your hard drive into an ofImage;

• a real-time image stream from a webcam or other video camera (using an
ofVideoGrabber);

• a sequence of frames loaded from a digital video file (using an ofVideoPlayer);
• a buffer of pixels grabbed from whatever you’ve already displayed on your screen,
captured with ofImage::grabScreen();

• a synthetic computer graphic rendering, perhaps obtained from an ofFBO or
stored in an ofPixels or ofTexture object;

• a real-time video from a more specialized variety of camera, such as a
1394b Firewire camera (via ofxLibdc), a networked Ethernet camera (via
ofxIpCamera), a Canon DSLR (using ofxCanonEOS), or with the help of a
variety of other community-contributed addons like ofxQTKitVideoGrabber,
ofxRPiCameraVideoGrabber, etc.;

• perhaps more exotically, a depth image, in which pixel values represent distances
instead of colors. Depth images can be captured from real-world scenes with spe-
cial cameras (such as a Microsoft Kinect via the ofxKinect addon), or extracted
from synthetic CGI scenes using (for example) ofFBO::getDepthTexture().

195

10 Image Processing and Computer Vision

An example of a depth im-
age (left) and a corresponding RGB color image (right), captured simultaneously with a
Microsoft Kinect. In the depth image, the brightness of a pixel represents its proximity
to the camera.

Incidentally, OF makes it easy to load images directly from the Internet, by using a URL
as the filename argument, as in myImage.loadImage("http://en.wikipedia.org/wiki/File:Example.jpg");.
Keep in mind that doing this will load the remotely-stored image synchronously, mean-
ing your program will “block” (or freeze) while it waits for all of the data to download
from the web. For an improved user experience, you can also load Internet im-
ages asynchronously (in a background thread), using the response provided by
ofLoadURLAsync(); a sample implementation of this can be found in the openFrame-
works imageLoaderWebExample graphics example. Now that you can load images
stored on the Internet, you can fetch images computationally using fun APIs (like
those of Temboo⁴, Instagram⁵ or Flickr⁶), or from dynamic online sources such as live
traffic cameras.

10.1.1.3 Acquiring and Displaying a Webcam Image

The procedure for acquiring a video stream from a live webcam or digital movie file
is no more difficult than loading an ofImage. The main conceptual difference is that
the image data contained within an ofVideoGrabber or ofVideoPlayer happens to
be continually refreshed, usually about 30 times per second (or at the framerate of the
footage).

The following program (which you can find elaborated in the OF videoGrabberExample)
shows the basic procedure. In this example below, for some added fun, we also retrieve
the buffer of data that contains the ofVideoGrabber’s pixels, then “invert” this data
(to produce a “photographic negative”) and display it with an ofTexture.

The header file for our app declares an ofVideoGrabber, which we will use to acquire
video data from our computer’s default webcam. We also declare a buffer of unsigned
chars to store the inverted video frame, and the ofTexture which we’ll use to display
it:
⁴https://temboo.com/library/
⁵http://instagram.com/developer/
⁶https://www.flickr.com/services/api/

196

https://temboo.com/library/
http://instagram.com/developer/
https://www.flickr.com/services/api/

10.1 Preliminaries to Image Processing

� �
// Example 2. An application to capture, display,
// and invert live video from a webcam.
// This is ofApp.h

#pragma once
#include "ofMain.h"

class ofApp : public ofBaseApp{
public:

void setup();
void update();
void draw();

ofVideoGrabber myVideoGrabber;
ofTexture myTexture;

unsigned char* invertedVideoData;
int camWidth;
int camHeight;

};� �
Does the unsigned char* declaration look unfamiliar? It’s important to recognize and
understand, because this is a nearly universal way of storing and exchanging image
data. The unsigned keyword means that the values which describe the colors in our
image are exclusively positive numbers. The char means that each color component
of each pixel is stored in a single 8-bit number—a byte, with values ranging from 0
to 255—which for many years was also the data type in which characters were stored.
And the * means that the data named by this variable is not just a single unsigned
char, but rather, an array of unsigned chars (or more accurately, a pointer to a buffer of
unsigned chars). For more information about such datatypes, see Chapter 9, Memory
in C++.

Below is the complete code of our webcam-grabbing .cpp file. As you might expect, the
ofVideoGrabber object provides many more options and settings, not shown here.
These allow you to do things like listing and selecting from available camera devices;
setting your capture dimensions and framerate; and (depending on your hardware and
drivers) adjusting parameters like camera exposure and contrast.

Note that the example segregates our heavy computation into update(), and rendering
our graphics into draw(). This is a recommended pattern for structuring your code.� �
// Example 2. An application to capture, invert,
// and display live video from a webcam.
// This is ofApp.cpp

#include "ofApp.h"

197

10 Image Processing and Computer Vision

void ofApp::setup(){

// Set capture dimensions of 320x240, a common video size.
camWidth = 320;
camHeight = 240;

// Open an ofVideoGrabber for the default camera
myVideoGrabber.initGrabber (camWidth,camHeight);

// Create resources to store and display another copy of the data
invertedVideoData = new unsigned char [camWidth*camHeight*3];
myTexture.allocate (camWidth,camHeight, GL_RGB);

}

void ofApp::update(){

// Ask the grabber to refresh its data.
myVideoGrabber.update();

// If the grabber indeed has fresh data,
if (myVideoGrabber.isFrameNew()){

// Obtain a pointer to the grabber's image data.
unsigned char* pixelData = myVideoGrabber.getPixels();

// For every byte of the RGB image data,
int nTotalBytes = camWidth*camHeight*3;
for (int i=0; i<nTotalBytes; i++){

// pixelData[i] is the i'th byte of the image;
// subtract it from 255, to make a "photo negative"
invertedVideoData[i] = 255 - pixelData[i];

}

// Now stash the inverted data in an ofTexture
myTexture.loadData (invertedVideoData, camWidth,camHeight,

GL_RGB);
}

}

void ofApp::draw(){
ofBackground(100,100,100);
ofSetColor(255,255,255);

// Draw the grabber, and next to it, the "negative" ofTexture.
myVideoGrabber.draw(10,10);
myTexture.draw(340, 10);

}� �
198

10.1 Preliminaries to Image Processing

This application continually displays the live camera feed, and also presents a live,
“filtered” (photo negative) version. Here’s the result, using my laptop’s webcam:

Figure 10.3: Video grabber screenshot

Acquiring frames from a Quicktime movie or other digital video file stored on disk
is an almost identical procedure. See the OF videoPlayerExample implementation or
ofVideoGrabber documentation⁷ for details.

A common pattern among developers of interactive computer vision systems is to en-
able easy switching between a pre-stored “sample” video of your scene, and video from
a live camera grabber. That way, you can test and refine your processing algorithms
in the comfort of your hotel room, and then switch to “real” camera input when you’re
back at the installation site. A hacky if effective example of this pattern can be found
in the openFrameworks opencvExample, in the addons example directory, where the
switch is built using a #define preprocessor directive⁸:� �

//...
#ifdef _USE_LIVE_VIDEO

myVideoGrabber.initGrabber(320,240);
#else

myVideoPlayer.loadMovie("pedestrians.mov");
myVideoPlayer.play();

#endif
//...� �

Uncommenting the //#define _USE_LIVE_VIDEO line in the .h file of the opencvExam-
ple forces the compiler to attempt to use a webcam instead of the pre-stored sample
video.

⁷http://openframeworks.cc/documentation/video/ofVideoGrabber.html
⁸http://www.cplusplus.com/doc/tutorial/preprocessor/

199

http://openframeworks.cc/documentation/video/ofVideoGrabber.html
http://www.cplusplus.com/doc/tutorial/preprocessor/

10 Image Processing and Computer Vision

10.1.1.4 Pixels in Memory

To begin our study of image processing and computer vision, we’ll need to do more
than just load and display images; we’ll need to access, manipulate and analyze the
numeric data represented by their pixels. It’s therefore worth reviewing how pixels are
stored in computer memory. Below is a simple illustration of the grayscale image buffer
which stores our image of Abraham Lincoln. Each pixel’s brightness is represented by
a single 8-bit number, whose range is from 0 (black) to 255 (white):

Figure 10.4: Pixel data diagram

In point of fact, pixel values are almost universally stored, at the hardware level, in
a one-dimensional array. For example, the data from the image above is stored in a
manner similar to this long list of unsigned chars:� �
{157, 153, 174, 168, 150, 152, 129, 151, 172, 161, 155, 156,
155, 182, 163, 74, 75, 62, 33, 17, 110, 210, 180, 154,
180, 180, 50, 14, 34, 6, 10, 33, 48, 106, 159, 181,
206, 109, 5, 124, 131, 111, 120, 204, 166, 15, 56, 180,
194, 68, 137, 251, 237, 239, 239, 228, 227, 87, 71, 201,
172, 105, 207, 233, 233, 214, 220, 239, 228, 98, 74, 206,
188, 88, 179, 209, 185, 215, 211, 158, 139, 75, 20, 169,
189, 97, 165, 84, 10, 168, 134, 11, 31, 62, 22, 148,
199, 168, 191, 193, 158, 227, 178, 143, 182, 106, 36, 190,
205, 174, 155, 252, 236, 231, 149, 178, 228, 43, 95, 234,
190, 216, 116, 149, 236, 187, 86, 150, 79, 38, 218, 241,
190, 224, 147, 108, 227, 210, 127, 102, 36, 101, 255, 224,
190, 214, 173, 66, 103, 143, 96, 50, 2, 109, 249, 215,
187, 196, 235, 75, 1, 81, 47, 0, 6, 217, 255, 211,
183, 202, 237, 145, 0, 0, 12, 108, 200, 138, 243, 236,
195, 206, 123, 207, 177, 121, 123, 200, 175, 13, 96, 218};� �

This way of storing image data may run counter to your expectations, since the data
certainly appears to be two-dimensional when it is displayed. Yet, this is the case, since
computer memory consists simply of an ever-increasing linear list of address spaces.

200

10.1 Preliminaries to Image Processing

Note how this data includes no details about the image’s width and height. Should
this list of values be interpreted as a grayscale image which is 12 pixels wide and 16
pixels tall, or 8x24, or 3x64? Could it be interpreted as a color image? Such ‘meta-data’
is specified elsewhere — generally in a container object like an ofImage.

10.1.1.5 Grayscale Pixels and Array Indices

It’s important to understand how pixel data is stored in computer memory. Each pixel
has an address, indicated by a number (whose counting begins with zero):

Figure 10.5: Based on Shiffman’s image in the Processing tutorial

Observe how the (one-dimensional) list of values have been distributed to successive
(two-dimensional) pixel locations in the image — wrapping over the right edge just like
English text.

It frequently happens that you’ll need to determine the array-index of a given pixel
(x,y) in an image that is stored in an unsigned char* buffer. This little task comes up
often enough that it’s worth committing the following pattern to memory:� �
// Given:
// unsigned char *buffer, an array storing a one-channel image
// int x, the horizontal coordinate (column) of your query pixel
// int y, the vertical coordinate (row) of your query pixel
// int imgW, the width of your image

int arrayIndex = y*imgW + x;

// Now you can GET values at location (x,y), e.g.:
unsigned char pixelValueAtXY = buffer[arrayIndex];

// And you can also SET values at that location, e.g.:
buffer[arrayIndex] = pixelValueAtXY;� �

201

10 Image Processing and Computer Vision

Reciprocally, you can also fetch the x and y locations of a pixel corresponding to a given
array index:� �
// Given:
// A one-channel (e.g. grayscale) image
// int arrayIndex, an index in that image's array of pixels
// int imgW, the width of the image

int y = arrayIndex / imgW; // NOTE, this is integer division!
int x = arrayIndex % imgW;� �
Most of the time, you’ll be working with image data that is stored in a higher-level con-
tainer object, such as an ofImage. There are two ways to get the values of pixel data
stored in such a container. In one method, we can ask the image for its array of un-
signed char pixel data, using .getPixels(), and then fetch the value we want from this
array. Many image containers, such as ofVideoGrabber, also support a .getPixels()
function.� �
int arrayIndex = y*imgW + x;
unsigned char* myImagePixelBuffer = myImage.getPixels();
unsigned char pixelValueAtXY = myImagePixelBuffer[arrayIndex];� �
The second method is a high-level convenience operator that returns the color stored
at a pixel location:� �
ofColor colorAtXY = myImage.getColor(x, y);
float brightnessOfColorAtXY = colorAtXY.getBrightness();� �
10.1.1.6 Finding the Brightest Pixel in an Image

Using what we know now, we can write a simple computer-vision program that locates
the brightest pixel in an image. This elementary concept was used to great artistic
effect by the artist collective, Graffiti Research Lab (GRL), in the openFrameworks appli-
cation they built for their 2007 project L.A.S.E.R Tag⁹. The concept of L.A.S.E.R Tag was to
allow people to draw projected graffiti on a large building facade, using a laser pointer.
The bright spot from the laser pointer was tracked by code similar to that shown below,
and used as the basis for creating projected graphics.

The .h file for our app loads an ofImage (laserTagImage) of someone pointing a laser
at the building. (In the real application, a live camera was used.)� �
// Example 3. Finding the Brightest Pixel in an Image
// This is ofApp.h

⁹http://www.graffitiresearchlab.com/blog/projects/laser-tag/

202

http://www.graffitiresearchlab.com/blog/projects/laser-tag/

10.1 Preliminaries to Image Processing

Figure 10.6: Laser Tag by GRL

#pragma once
#include "ofMain.h"

class ofApp : public ofBaseApp{
public:

void setup();
void draw();
ofImage laserTagImage;

};� �
Here’s the .cpp file:� �
// Example 3. Finding the Brightest Pixel in an Image
// This is ofApp.cpp

#include "ofApp.h"

//---------------------
void ofApp::setup(){

laserTagImage.loadImage("images/laser_tag.jpg");
}

//---------------------
void ofApp::draw(){

ofBackground(255);

203

10 Image Processing and Computer Vision

int w = laserTagImage.getWidth();
int h = laserTagImage.getHeight();

float maxBrightness = 0; // these are used in the search
int maxBrightnessX = 0; // for the brightest location
int maxBrightnessY = 0;

// Search through every pixel. If it is brighter than any
// we've seen before, store its brightness and coordinates.
for (int y=0; y<h; y++) {

for(int x=0; x<w; x++) {
ofColor colorAtXY = laserTagImage.getColor(x, y);
float brightnessOfColorAtXY = colorAtXY.getBrightness();
if (brightnessOfColorAtXY > maxBrightness){

maxBrightness = brightnessOfColorAtXY;
maxBrightnessX = x;
maxBrightnessY = y;

}
}

}

// Draw the image.
ofSetColor (255);
laserTagImage.draw(0,0);

// Draw a circle at the brightest location.
ofNoFill();
ofEllipse (maxBrightnessX, maxBrightnessY, 40,40);

}� �
Our application locates the bright spot of the laser (which, luckily for us, is the brightest
part of the scene) and draws a circle around it. Of course, now that we know where the
brightest (or darkest) spot is, we can can develop many interesting applications, such
as sun trackers, turtle trackers…

Being able to locate the brightest pixel in an image has other uses, too. For example, in
a depth image (such as produced by a Kinect sensor), the brightest pixel corresponds
to the foremost point—or the nearest object to the camera. This can be extremely
useful if you’re making an interactive installation that tracks a user’s hand.

The brightest pixel in a depth image corresponds to the nearest object to the camera.

Unsurprisingly, trackingmore than one bright point requires more sophisticated forms
of processing. If you’re able to design and control the tracking environment, one simple
yet effective way to track up to three objects is to search for the reddest, greenest and
bluest pixels in the scene. Zachary Lieberman used a technique similar to this in his
IQ Font¹⁰ collaboration with typographers Pierre & Damien et al., in which letterforms

¹⁰https://vimeo.com/5233789

204

https://vimeo.com/5233789

10.1 Preliminaries to Image Processing

Figure 10.7: Laser Tag by GRL

Figure 10.8: Not mine

205

10 Image Processing and Computer Vision

were created by tracking the movements of a specially-marked sports car.

Figure 10.9: Not mine

10.1.1.7 Three-Channel (RGB) Images.

Our Lincoln portrait image shows an 8-bit, 1-channel image. Each pixel uses a single
round number (technically, an unsigned char) to represent a single luminance value.
But other data types and formats are possible.

For example, it is common for color images to be represented by 8-bit, 3-channel im-
ages. In this case, each pixel brings together 3 bytes’ worth of information: one byte
each for red, green and blue intensities. In computer memory, it is common for these
values to be interleaved R-G-B. As you can see, color images necessarily contain three
times as much data.

Figure 10.10: Not mine

Take a very close look at your LCD screen, and you’ll see how this way of storing the
data is directly motivated by the layout of your display’s phosphors:

Because the color data are interleaved, accessing pixel values in buffers containing RGB
data is slightly more complex. Here’s how you can retrieve the values representing the
individual red, green and blue components of pixel at a given (x,y) location:

206

10.1 Preliminaries to Image Processing

Figure 10.11: Not mine

� �
// Given:
// unsigned char *buffer, an array storing an RGB image
// (assuming interleaved data in RGB order!)
// int x, the horizontal coordinate (column) of your query pixel
// int y, the vertical coordinate (row) of your query pixel
// int imgWidth, the width of the image

int rArrayIndex = (y*imgWidth*3) + (x*3);
int gArrayIndex = (y*imgWidth*3) + (x*3) + 1;
int bArrayIndex = (y*imgWidth*3) + (x*3) + 2;

// Now you can get and set values at location (x,y), e.g.:
unsigned char redValueAtXY = buffer[rArrayIndex];
unsigned char greenValueAtXY = buffer[gArrayIndex];
unsigned char blueValueAtXY = buffer[bArrayIndex];� �
10.1.1.8 Other Kinds of Image Formats and Containers

8-bit 1-channel and 8-bit 3-channel images are the most common image formats you’ll
find. In the wide world of image processing algorithms, however, you’ll eventually en-
counter an exotic variety of other types of images, including: - 8-bit palettized images,
in which each pixel stores an index into an array of (up to) 256 possible colors; - 16-
bit (unsigned short) images, in which each channel uses two bytes to store each of
the color values of each pixel, with a number that ranges from 0-65535; - 32-bit (float)
images, in which each color channel’s data is represented by floating point numbers.

207

10 Image Processing and Computer Vision

For a practical example, consider Microsoft’s popular Kinect sensor, which produces a
depth image whose values range from 0 to 1090. Clearly, that’s wider than the range of
8-bit data (from 0 to 255) one might typically encounter; in fact, it’s approximately 11
bits of resolution. To accommodate this, the ofxKinect addon employs a 16-bit image
to store this information without losing precision. Likewise, the precision of 32-bit
floats is almost mandatory for computing high-quality video composites.

You’ll also find: - 2-channel images (commonly used for luminance plus transparency);
- 3-channel images (generally for RGB data, but occasionally used to store images in
other color spaces, such as HSB or YUV); - 4-channel images (commonly for RGBA im-
ages, but occasionally for CMYK); - Bayer images, in which the RGB color channels are
not interleaved R-G-B-R-G-B-R-G-B… but instead appear in a unique checkerboard pat-
tern.

It gets even more exotic. “Hyperspectral” imagery from the Landsat 8 satellite¹¹, for
example, has 11 channels, including bands for ultraviolet, near infrared, and thermal
(deep) infrared!

In openFrameworks, images can be stored in a variety of different container classes,
which allow their data to be used (captured, displayed, manipulated, and stored) in
different ways and contexts. Some of the more common containers you may encounter
are:

• unsigned char* An array of unsigned chars, this is the raw format used for storing
buffers of pixel data. It’s not very smart, but it’s often useful for exchanging data
with different libraries. Many image processing textbooks will assume your data
is stored this way.

• ofPixels This is a container for pixel data which lives inside each ofImage, as well
as other classes like ofVideoGrabber. It’s a wrapper around a buffer that includes
additional information like width and height.

• ofImage The ofImage is the most common object for loading, saving and display-
ing static images in openFrameworks. Loading a file into the ofImage allocates an
(internal) ofPixels object to store the image data. ofImage objects are not merely
containers, but also support methods for displaying their pixel data.

• ofxCvImage This is a container for image data used by the ofxOpenCV addon for
openFrameworks, which supports certain functionality from the popular OpenCV
library for filtering, thresholding, and other image manipulations.

• cv::Mat This is the data structure used by OpenCV to store image information. It’s
not used in openFrameworks, but if you work a lot with OpenCV, you’ll often find
yourself placing and extracting data from this format.

To the greatest extent possible, the designers of openFrameworks (and OF addons for
image processing, like ofxOpenCV and ofxCv) have provided simple operators to help
make it easy to exchange data between these containers.

¹¹https://www.mapbox.com/blog/putting-landsat-8-bands-to-work/

208

https://www.mapbox.com/blog/putting-landsat-8-bands-to-work/

10.1 Preliminaries to Image Processing

10.1.1.9 RGB, grayscale, and other color space conversions

Many computer vision algorithms (though not all!) are commonly performed on
grayscale or monochome images. Converting color images to grayscale can signifi-
cantly improve the speed of many image processing routines, because it reduces both
the number of calculations as well as the amount of memory required to process the
data. Except where stated otherwise, all of the examples in this chapter assume that
you’re working with monochrome images. Here’s some simple code to convert a color
image (e.g. captured from a webcam) into a grayscale version:

[Code to convert RGB to grayscale using openFrameworks]

[Code to convert RGB to grayscale using ofxCV]

[Code to convert RGB to grayscale using OpenCV]

Of course, there are times when

10.1.2 Image arithmetic: mathematical operations on images

A core part of the workflow of computer vision is image arithmetic. These are the
basic mathematical operations we all know – addition, subtraction, multiplication, and
division – but interpreted in the image domain. Here are two very simple examples:

[Code to add a constant value to an image]

[Code to multiply an image by a constant]

TIP: Watch out for blowing out the range of your data types.

When assume that these operations are performed pixelwise – meaning, for every pixel
in an image. When

In the examples presented here, for the sake of simplicity, we’ll assume that the images
upon which we’ll perform these operations are all the same size – for example, 640x480
pixels, a typical capture size for many webcams. We’ll also assume that these images
are monochrome or grayscale.

• adding two images together
• subtracting two images
• multiplying an image by a constant
• mentioning ROI
• Example: creating an average of several images (e.g. Jason Salavon)
• Example: creating a running average
• Example: creating a circular alpha-mask from a computed Blinn spot

209

10 Image Processing and Computer Vision

10.1.3 Filtering and Noise Removal Convolution Filtering

• Blurring an image
• Edge detection
• Median filtering
• Advanced sidebar: dealing with boundary conditions

== 3. Scenario I. Basic
Blobs (e.g. Manual Input Sessions)

3.1. The Why - Some examples of projects that use blob-tracking - and some scenarios
that call for it.

10.1.4 3.2. Detecting and Locating Presence and Motion

10.1.4.1 3.2.1. Detecting presence with Background subtraction

sfdflkj #### 3.2.2. Detecting motion with frame-differencing sfdflkj #### 3.2.3. Binariza-
tion, blob detection and contour extraction sfdflkj - Area thresholds for contour extrac-
tion (min plausible area, max plausible area, as % of capture size) - Finding negative
vs. positive contours

10.1.5 3.3. Image Processing Refinements

10.1.5.1 3.3.1. Using a running average of background

10.1.5.2 3.3.2. Erosion, dilation, median to remove noise after binarization

10.1.5.3 3.3.3. Combining presence and motion in a weighted average

10.1.5.4 3.3.4. Compensating for perspectival distortion and lens distortion

10.1.6 3.4. Thresholding Refinements

• Some techniques for automatic threshold detection
• Dynamic thresholding (per-pixel thresholding)

3.5. The Vector space: Extracting information from Blob Contours - Area, Perimeter,
Centroids, Bounding box - Calculcating blob orientation (central axis) - Locating corners
in contours, estimating local curvature - 1D Filtering of contours to eliminate noise, i.e
local averaging. - Other shape metrics; shape recognition

210

10.1 Preliminaries to Image Processing

3.6. Using Kinect depth images - Finding the “fore-point” (foremost point) - Background
subtraction with depth images - Hole-filling in depth images - Computing normals from
depth gradients

3.7. Suggestions for further experimentation: - Tracking multiple blobs with
ofxCv.tracker - Box2D polygons using OpenCV contours, e.g. https://vimeo.com/9951522

Automatic thresholding is

== 4. Scenario II. Face
Tracking.

4.1. Overview Some examples of projects that use face-tracking - Face Substitution¹²
by Kyle McDonald & Arturo Castro (2011). The classic - Google Faces¹³ by Onformative
(2012). This project, which identifies face-like features in Google Earth satellite imagery,
explores what Greg Borenstein has called machine pareidolia – the possibility that
computer algorithms can “hallucinate” faces in everyday images.

10.1.7 A basic face detector.

In this section we’ll which implements face detection using the classic “Viola-Jones”
face detector that comes with OpenCV. - Face detection with classic OpenCV viola-Jones
detector - How it works, and considerations when using it. - cvDazzle;

How does the Viola-Jones face-tracker work?

The cvDazzle¹⁴ project by Adam Harvey

Ada writes: “OpenCV is one of the most widely used face detectors. This algorithm
performs best for frontal face imagery and excels at computational speed. It’s ideal for
real-time face detection and is used widely in mobile phone apps, web apps, robotics,
and for scientific research.

OpenCV is based on the the Viola-Jones algorithm. This video shows the process used
by the Viola Jones algorithm, a cascading set of features that scans across an image
at increasing sizes. By understanding how the algorithm detects a face, the process of
designing an “anti-face” becomes more intuitive."

10.1.7.1 SIDEBAR

Orientation-dependence in the OpenCV face detector: Bug or Feature? -
Kyle & Aram (“How to Avoid Facial Recognition”

4.3. Advanced face analysis with the Saraghi FaceTracker

¹²https://vimeo.com/29348533
¹³http://www.onformative.com/lab/googlefaces/
¹⁴http://cvdazzle.com/

211

https://vimeo.com/29348533
http://www.onformative.com/lab/googlefaces/
http://cvdazzle.com/

10 Image Processing and Computer Vision

10.1.8 4.4. Suggestions for Further Experimentation

Now that you can locate faces in images and video, consider using the following exer-
cises as starting-points for further exploration:

• Make a face-controlled puppet
• Mine an image database for faces
• Make a kinetic sculpture that points toward a visitor’s face.

10.1.9 Suggestions for Further Experimentation

I sometimes assign my students the project of copying a well-known work of interactive
new-media art. Reimplementing projects such as the ones below can be highly instruc-
tive, and test the limits of your attention to detail. As Gerald King writes¹⁵, such copying
“provides insights which cannot be learned from any other source.” I recommend you
build…

10.1.9.1 A Slit-Scanner.

Slit-scanning — a type of “time-space imaging” — has been a common trope in in-
teractive video art for more than twenty years. Interactive slit-scanners have been
developed by some of the most revered pioneers of new media art (Toshio Iwai, Paul
de Marinis, Steina Vasulka) as well as by literally dozens¹⁶ of other highly regarded
practitioners. The premise remains an open-ended format for seemingly limitless ex-
perimentation, whose possibilities have yet to be exhausted. It is also a good exercise
in managing image data, particularly in extracting and copying pixel ROIs. In digital
slit-scanning, thin slices are extracted from a sequence of video frames, and concate-
nated into a new image. The result is an image which succinctly reveals the history of
movements in a video or camera stream.

10.1.9.2 Text Rain by Camille Utterback and Romy Achituv (1999).

Text Rain¹⁷ is a now-classic work of interactive art in which virtual letters appear to “fall”
on the visitor’s “silhouette”. Utterback writes: “In the Text Rain installation, participants
stand or move in front of a large projection screen. On the screen they see a mirrored
video projection of themselves in black and white, combined with a color animation
of falling letters. Like rain or snow, the letters appears to land on participants’ heads
and arms. The letters respond to the participants’ motions and can be caught, lifted,

¹⁵http://www.geraldking.com/Copying.htm
¹⁶http://www.flong.com/texts/lists/slit_scan/
¹⁷http://camilleutterback.com/projects/text-rain/

212

http://www.geraldking.com/Copying.htm
http://www.flong.com/texts/lists/slit_scan/
http://camilleutterback.com/projects/text-rain/

10.1 Preliminaries to Image Processing

Figure 10.12: Daniel Rozin, Time Scan Mirror (2004)

and then let fall again. The falling text will ‘land’ on anything darker than a certain
threshold, and ‘fall’ whenever that obstacle is removed.”

Figure 10.13: Camille Utterback and Romy Achituv, Text Rain (1999)

==
A Computer-Vision lexicon, and where to find out more information

Computer vision is a huge field and we can’t possibly cover all useful examples here.
Sometimes people lack the terminology to know what to google for.

– Camera calibration. – Homography transforms and re-projection.

213

11 hardware

by Caitlin Morris¹ and Pierre Proske²

11.1 introduction

This chapter will give you an introduction to working with openFrameworks outside
of your computer screen and into the physical world. Why exactly would you want to
do this? Well, given that we are physical creatures ourselves, having software control,
sense and actuate real-world things can be pretty exciting and create truly visceral
experiences. Screen based work can be captivating, but physical installations have the
potential to deliver greater impact due to their more tangible nature.

There are a number of ways of taking your openFrameworks app out of the frame of
your own personal computer and getting it to interact with the outside world. Largely
this involves some kind of communication from openFrameworks to whatever hardware
you’ve decided to hook up to. The different types of computer based communications
(or protocols) vary, but the most common is what’s known as ‘serial’ communication,
so called because each bit of data sent is transferred one after the other (as opposed
to multiple bits being sent in parallel).

The first hardware that we’ll look at interfacing with is the excellent Arduino prototyp-
ing platform. Arduino is, in its own words, an *“open-source electronics prototyping
platform based on flexible, easy-to-use hardware and software… intended for artists,
designers, hobbyists, and anyone interested in creating interactive objects or environ-
ments.*” It’s easy to see why there’s a lot of overlap between communities of people
interested in using openFrameworks and Arduino! With Arduino, it’s quick to get your
openFrameworks app hooked up to sensors (like light sensors, proximity sensors, or
other methods of environmental input), actuators (like lights, motors, and other out-
puts), and real-time interaction. You’re free to move out of the realm of pixels and into
the physical world.

This chapter assumes that you have the Arduino IDE installed, in addition to the
environment that you normally use for working with openFrameworks. If not,
you can download it from the Arduino website (arduino.cc) or the Arduino github
(github.com/arduino).

¹http://www.caitlinmorris.net/
²http://www.digitalstar.net/

215

http://www.caitlinmorris.net/
http://www.digitalstar.net/

11 hardware

Additionally, following along with the examples in this chapter requires you to have
a few pieces of basic hardware. You’ll need an Arduino (any generation; an Uno,
Leonardo, or Duemilanove will look the most like the graphics in this chapter but any
USB-connected Arduino will work just fine) and the appropriate USB cable to connect
to your computer.

[** Callout - The Leonardo differs from earlier boards in that it has built-in USB com-
munication, eliminating the need for a secondary processor. This allows the Leonardo
to appear to a connected computer as a mouse and keyboard, in addition to a virtual
serial port. This makes setting up interactive applications a very simple procedure - in
your openFrameworks app all you need to do is check for a key press! **]

11.2 getting started with serial communication

SERIAL: ONE AFTER THE OTHER

Serial, in the most basic language sense, refers to things that come one after another;
it’s a term often used to describe magazines, crimes, and television programs. That
meaning also applies when talking about serial data: “serial communication” means
that all information between two entities is being sent one piece at a time, following
in a single stream. One piece of data, or one bit, is just a binary piece of information:
you’re either sending a 0 or a 1. Using the terminology of digital electronics, these are
frequently referred to as “high” and “low”; 0 is low (like turning a light off) and 1 is high
(flipping it back on). 8 bits (for example the stream 01000001, which represents the
letter A) are sometimes packaged together to create a single byte.

Serial communication is actually a very broad topic and there are many serial proto-
cols, including audio-visual protocols such as DMX (based on RS-485) and MIDI (serial
at 31,250 bits per second) which we’ll briefly cover in this chapter. The most common
serial protocol is called RS-232 and computers used to be equipped with RS-232 serial
ports (remember them?) but today they are rarely present, which is why serial commu-
nications involving a computer will typically require an RS-232 to USB adaptor (found
on-line or at your local electronics store).

Figure 11.1: RS-232 to USB adaptor

216

11.2 getting started with serial communication

However, if you’re connecting to an Arduino, it already appears to the computer as a vir-
tual serial port and you just need a regular USB cable (the exact type is dependent on
which model Arduino you have). The Arduino also has a built-in library which handles
reading and writing to the serial port that appears on your computer. Additionally, the
Arduino has bi-directional RS-232 serial ports which can be used to connect to other ex-
ternal serial devices. In short - the Arduino is well equipped for serial communications
and does most of the hard work for you!

note: expand on Serial library

The speed at which data is transmitted between the Arduino and your software is mea-
sured in bits per second, or bps, a fairly self-explanatory unit of measurement. The
rate of bits per second is commonly referred to as the baud rate, and will vary based
on your application. For example, the standard baud rate of 9600bps will transfer data
more slowly than a rate of 115200, but the faster baud rate may have more issues with
byte scrambling.� �
-- editor joshuajnoble I think adding some explanation of what rs232

is (a picture of an oscilloscope would be good) the flow of using:

enumerateDevices()
setup()
available()
close()

So you can find all serial devices, open the device, check if it has
data, close the port and release the file handle.

Might be nice to have the Arduino serial example mirror the DMX
example, like:

here's some Arduino code to kick this off

int redPin = 9; // Red LED
int greenPin = 10; // Green LED
int bluePin = 11; // Blue LED

int color[4];
long int inByte;
int wait = 10; //10ms

void setup()
{

pinMode(redPin, OUTPUT); // sets the pins as output
pinMode(greenPin, OUTPUT);
pinMode(bluePin, OUTPUT);

Serial.begin(9600);

217

11 hardware

}

void outputColour(int red, int green, int blue) {
analogWrite(redPin, red);
analogWrite(bluePin, blue);
analogWrite(greenPin, green);

}

void setColor() {
int i = 0;

//wait and be patient
while (i < 4)
{
if (Serial.available() > 0) {

color[i] = Serial.read();
i++;

}
}

}

// Main program
void loop()
{

if (Serial.available() > 0) {
// get incoming byte:
inByte = Serial.read();

if (inByte == 'C') {
getColour();
analogWrite(redPin, color[1]);
analogWrite(bluePin, color[2]);
analogWrite(greenPin, color[3]);

}
}
delay(wait);

}

-- end editor� �
11.3 digital and analog communication

USING SERIAL MONITOR WITH ARDUINO

The Arduino IDE has a built-in Serial monitor, which enables you to “tune in” to the data
coming across a serial port at a specified baud rate. You can find the Serial Monitor

218

11.3 digital and analog communication

either under Tools - Serial Monitor in the Arduinomenu bar, or in the “magnifying glass”
icon at the top of the IDE.
In the Arduino sketch, set up Serial communication and print a basic “Hello world!”
phrase to the Serial monitor in the setup() function:� �
Serial.begin(9600);
Serial.println("Hello␣world!");� �
Open the Serial monitor and make sure that your monitor is set to the same baud rate
as your sketch (the variable that you set in Serial.begin()). Note that the TX/RX lights
on your Arduino flash once on setup - you can press the reset button on your Arduino
(on most devices) to run setup again to see this more clearly. The Arduino itself is
sending the printed text over Serial and the Serial Monitor is picking up that text and
printing it for us to read.
Of course, you can also use the Serial monitor to reflect more interesting data coming
from devices that are connected to your Arduino. You can print both digital and analog
input data to Serial.
Digital inputs like pushbuttons, or a switch that only has open and closed positions,
will send a binary value as their status. You can walk through an example of connecting
a pushbutton to your Arduino in the excellent Arduino tutorial found here:
http://arduino.cc/en/tutorial/button
To print the value of the pushbutton to Serial, store the returned value from digitalRead
in a variable and print that variable to Serial, just as done previously with the “hello
world!” example. Here, though, print in the loop() function rather than setup() so that
the value updates continuously rather than only once on reset.� �
buttonState = digitalRead(buttonPin);
Serial.println(buttonState);� �
If you’re feeling limited by the binary nature of the pushbutton, you can also read from
an analog input, using a component like a potentiometer, photoresistor, or any of the
wide variety of sensors that provide non-binary input.
Analog inputs can only be connected on pins A0-A5 on a standard Arduino. These
analog-specific pins have an ADC (analog-digital converter) chip which enables them to
convert the amount of voltage returning from the circuit into a digital-readable number
between 0 and 1023.
There are a number of examples and tutorials for working with analog input; a basic
one using a potentiometer can be found here:
http://arduino.cc/en/Tutorial/AnalogInput
Printing the incoming variables to the Serial monitor is the same as with a digital
input, except that you’ll be using the Arduino function for analogRead() rather than
digitalRead():

219

11 hardware

� �
sensorValue = analogRead(sensorPin);
Serial.println(sensorValue);� �
11.4 using serial for communication between arduino and

openframeworks

In the same way that Arduino uses Serial communication for communication between
hardware and the Serial monitor, it can also use Serial communication to communicate
between the Arduino board and any other running application, including openFrame-
works. This can be done quite simply using the ofSerial class, native to openFrame-
works. This class sets up a Serial listener at a specified baud rate and Serial port,
giving it access to the same streaming data as the Serial library in the native Arduino
IDE.

There’s a good, heavily commented demonstration of this in the communications folder
of examples that comes bundled with openFrameworks. The basic components needed
to get this working are a Serial object, a toggle for knowing whether amessage has been
sent or not, and an array for storing the data that we receive.

USING FIRMATA AS A SERIAL PROTOCOL

Though it’s possible to navigate all serial communication manually, you’ll reach the
limitations of what you’re able to do fairly quickly - as soon as you start wanting to
address different devices or have multiple inputs, you’ll fall into a spiral of packet
management and be much more prone to getting corrupt packets or inaccurate and
scrambled data. Rather than deal with this manually, it’s much simpler to use Firmata,
an open source protocol for managing multiple Serial streams.

OFARDUINO

ofArduino, the built-in Arduino communication class for openFrameworks, is based on
Firmata protocol. Using ofArduino assumes that a default Firmata sketch is loaded
onto the Arduino. This sketch, found in the Arduino examples folder, enables all of the
pins of the Arduino for communication through both analog and digital communication,
as well as more specific addressing of pins for servomotor control.

EXAMPLE: Work through the same LED blink sketch as done previously with only Ar-
duino, but with OF.

The basic flow of what we’re going to do looks like this: (graphic missing)

• Make an ofArduino object
• Connect to the Arduino object at the correct port and baud rate
• Set up an event listener to determine whether we’re successfully connected to
the Arduino

220

11.4 using serial for communication between arduino and openframeworks

• Set up a pin to communicate with, and specify whether that communication is
analog or digital

• Poll for data from the serial port
• Send HIGH and LOW (or analog value) arguments to that pin

Make an ofArduino object

The first step is to add an ofArduino object into the header file of your project (usually,
testApp.h). I’ll call this myArduino.� �
void setup();
void update();
void draw();

ofArduino myArduino;� �
Now we’ve extended the capabilities of the native openFrameworks ofArduino class
into our sketch, and we can work with the object myArduino.

Connect to the Arduino object at the correct port and baud rate

In the setup() of testApp.cpp, use the ofArduino connect() function to set up a con-
nection at the appropriate port and baud rate. connect() takes two parameters: the
first is a String of the serial port name, which should match the serial port name you
connected to in the Arduino application; the second is the baud rate. Firmata uses a
standard baud rate of 57600 bps.� �
ard.connect("/dev/tty.usbserial-a700fiyD", 57600);� �
Set up an event listener to determine whether we’ve successfully connected to the
Arduino

If you’re working only within the Arduino IDE, it’s easy to have functions (like setting
up the pin modes) called only once at the start of the program – you can just call
those functions from within setup() with the confidence that they’ll always be run
once when the device initializes. When you’re communicating with other software like
openFrameworks, however, it’s important to have a checking system to ensure that any
setup functions only occur after a connection has been established. openFrameworks
uses the ofEventUtils class tomake this easier, relying on the default ofAddListener()
and ofRemoveListener() functions to check for the connection event.

Within the openFrameworks app, we’ll want to create an Arduino-specific setup() func-
tion, which is only called once as a result of the serial connection being established.
We’ll declare this function first in testApp.h:� �
void setupArduino(const int & version);� �
… and call it from testApp.cpp:

221

11 hardware

� �
void testApp::setupArduino(const int & version) {

// Arduino setup tasks will go here
}� �
The argument that’s being passed to the function, const int & version, is a default
return from the listener we’re about to set up, which always responds to a connection
event by sending back an argument with the connected firmware version. That can stay
as it is.

In the setup() of testApp.cpp, create a listener using ofAddListener(). ofAddListener()
is a function of ofEventUtils, which takes the arguments (event object, callback object,
callback function). When the event object happens (in this case, when the ofArduino
EInitialized event is triggered), ofAddListener tells the callback object (here, a pointer
to the testApp itself, referred to as “this”) to perform the setupArduino function that
we created in the last step.� �
ofAddListener(myArduino.EInitialized, this, &testApp.setupArduino);� �
When the EInitialized event is triggered (when the connection to the Arduino is
complete, and the Arduino responds by sending back information about its firmware
version), the listener sends us to the callback function, which in this case is
setupArduino().

Within setupArduino(), we can remove the listener, because we know a connection
has been established. ofRemoveListener() takes the same arguments as its coun-
terpart.� �
ofRemoveListener(myArduino.EInitialized, this,

&testApp.setupArduino);� �
Set up a pin to communicate with, and specify whether that communication is analog
or digital

Now it’s time to treat our Arduino setup function just like we would within a standard
Arduino app, and set up our pins and pin modes. Here, I’m going to set up my Arduino
Pin 13 as a digital output, in preparation for making a basic LED blink.� �
myArduino.sendDigitalPinMode(13, ARD_OUTPUT);� �
The other options for pin setup follow in line with standard Arduino pin settings:� �
sendDigitalPinMode(PIN_NUMBER, ARD_INPUT) // digital input
sendAnalogPinMode(PIN_NUMBER, ARD_OUTPUT) // analog output
sendAnalogPinMode(PIN_NUMBER, ARD_INPUT) // analog input� �
Poll for data from the serial port

222

11.5 Lights On - controlling hardware via DMX

In order to continuously update with new information on the serial port, it’s important
to periodically call the ofArduino update() function. This can be done in its own
Arduino-specific function, or can be called directly from testApp::update():� �
myArduino.update();� �
That’s it! Now you’re ready to start sending digital signals to pin 13 on your Arduino.

There are any number of triggers that you can use to control this signalling: you could
set up a timer, integrate it into a game event, use a camera input… the possibilities are
endless! Here, I’m going to trigger my Pin 13 LED to turn on and off based on the up
and down arrow keys.

Because I’m controlling activity with keyboard keys, I’m going to use the void
testApp::keyPressed (int key) function, but you could also place your triggers
within draw() or another function depending on your desired effect.� �
void testApp::keyPressed (int key){

switch (key) {
case OF_KEY_UP:

ard.sendDigital(13, ARD_HIGH); // turn LED on
break;

case OF_KEY_DOWN:
ard.sendDigital(13, ARD_LOW); // turn LED off
break;

default:
break;

}
}� �

When all the parts are together, run the app and toggle your UP and DOWN arrow keys
to turn the on-board LED on your Arduino on and off! You can also put in a 3mm or
5mm LED on pin 13 to make the effect more obvious. Remember that pin 13 is the only
Arduino pin with a built-in resistor, so if you want to add LEDs or other components
on other pins, you’ll need to build a full circuit with resistors to avoid burning out your
parts.

11.5 Lights On - controlling hardware via DMX

DMX (which stands for Digital Multiplex), also known as DMX512 (512 being the number
of channels each output can accommodate), is a protocol for controlling lighting and
stage equipment. It’s been around since the 80’s, and is sometimes referred to as the
MIDI of the lighting world as it achieves a fairly similar outcome - the sequencing and
controlling of hardware through the use of a computer. DMX can be used to control
anything from strobes to RGB par-can lights to LED fixtures. It’s even possible to drive

223

11 hardware

LED strips by Pulse Width Modulation if you have the right hardware. The advantage of
sending DMX through a custom openFrameworks app is that you can then integrate it
via all the other goodness OF has to offer, including custom GUI’s, custom sequencing
algorithms, camera tracking - you name it.

Overview of the DMX protocol

In order to send DMX first of all you need a DMX to USB control interface. This is a
special box that you’ll need to purchase in order to enable your computer to send
DMX data via a USB port. These interfaces can be easily purchased on-line in case you
can’t track one down locally. You’ll also need some DMX cables to connect between
the interface and the DMX device you want to control. Microphone cables with XLR
connectors can be used to send DMX data, although the official standard for DMX is a
5-pin cable, unlike the 3-pins that XLR has to offer. There does exist adaptors between
5 and 3-pin connectors in case you need to mix and match them. In any case, hook
up your hardware via cables to your DMX to USB device, install your drivers if required
(Operating System dependent) and you are ready to send. As previously mentioned,
each DMX output from your controller can send up to 512 channels of DMX data. In
DMX terminology, each group of 512 channels is known as a “Universe”. Multiple DMX
Universes are often used in complex setups requiring lots of channels. Typically you
won’t need more than a single universe as a single coloured light will only use up
around 3 channels (one each for red, green and blue).

DMX data format

A DMX packet, in other words the data sent to the hardware each frame, consists of 512
channels, with an 8-bit value sent per channels (i.e. 0-255). One of the idiosyncracies
of DMX is that the channel numbering starts at 1, channel 0 being a start code and not
a data channel. This means that when setting up an array to hold your per-frame DMX
data, you’ll need to make it a size of 513 bytes. In openFrameworks we almost always
represent a byte as an unsigned char, though you can also represent this with other
types.� �
//setup the data structure
unsigned char dmxData[513];

// zero the first value
dmxData[0] = 0;

// channels are valid from here on up
dmxData[1] = 126;� �
A number of OF addons have sprung up around DMX, a quick search of ofxAddons.com
will reveal themost up to date. Typically these addons will have set up all the necessary
data structures, including the one above, so you won’t need to worry about anything
other than sending the right data to the right channels. The hardest part will probably
be installing the drivers for your controller!

224

11.5 Lights On - controlling hardware via DMX

Figure 11.2: DMX Lighting

225

11 hardware

Structure of an OF DMX application

No matter which code or which addon you use, the way in which you’ll send DMX data
will be very similar to the following pseudo-code (replace the comments with the rel-
evant code):� �
void ofApp::setup() {

//connect to your DMX controller
}

void ofApp::update() {

//assign the relevant values to your DMX data structure

//update the DMX controller with the new data
}� �
The only concern then becomes what colour you’ll be setting your lights and how you’d
like to dim them.

Using a colour picker to set up your lights

editor – see above, I think could be cool to mirror this with the ofSerial
example

TODO

editor joshuajnoble I really feel like we should have rpi in its own chap-
ter. It’s so tricky to get setup. I do think that talking about something like
wiringPi in the context of hardware is a really good idea though, for sure.

11.6 Raspberry Pi - getting your OF app into small spaces

The Raspberry Pi is a popular small sized computer (also known as a single board
computer) running on hardware not entirely dissimilar to that which powers today’s
smartphones. The processor at least, is part of the same ARM family of chips. Originally
the Raspberry Pi (abbreviated as RPi) was originally developed as an educational plat-
form to be able to teach the basics of computing hardware in a simple and affordable
package. The Raspberry Pi is part of a much larger ecosystem of ARM devices, and the
Model B Pi, the most popular version available shortly after launch, is technically clas-
sified as an ARM6 device. OpenFrameworks currently supports ARM6 and ARM7 devices,
of which the latter are typically more recent and faster hardware designs. While there
are plenty of small form-factor alternatives to the Pi, it’s a good choice as a computing
platform due to the community that’s formed around it and the various hardware and
software extensions that have been developed for it. The Raspberry Pi is also com-
pletely open source, including the source code for the Broadcom graphics stack that

226

11.6 Raspberry Pi - getting your OF app into small spaces

it contains, which is quite unusual in the hardware world. The advantages of this are
again that it enables enthusiasts and professionals from within the RPi community to
extend this device to its fullest potential. Having a platform that is well tested and can
be used in many different applications is also of benefit, particularly for installations
that need to run for extensive periods of time. However, as with any technology, there
are advantages and there are caveats, which we’ll cover here, along with some practi-
cal scenarios which might be useful to anyone interested in taking this mini-computer
into the wilds.

Setting up a Raspberry Pi

The Raspberry Pi is typically loaded with a version of the Linux operating system that
has been tailored for its particular hardware requirements. The most common is the
Raspbian distribution (recommended by the Raspberry Pi Foundation, the organisation
producing the device) however whichever distribution you choose you’ll end up having
to engage with the intricacies of Linux at some point, and becoming familiar with using
the command-line will be necessary. However fear not, you won’t need to dig too deep
and most likely you’ll just be following well documented guides that others have set
up - one of the aforementioned benefits of using this gadget. Having approximately
the surface area of an Arduino Mega (although having a slightly higher profile), while
far slower than a desktop computer, the RPi is a relatively powerful device with out-of-
the-box features (USB 1.1 hub, full networking stack, HDMI and audio out etc.) than you
won’t see on an Arduino yet similarly priced. More importantly, within the context of
this chapter, the RPi is both small and has a serial port, which lends itself to well to
hardware applications where often both of those are prerequisites. There’s not much
point in describing the full setup process of a Raspberry Pi as it’s better described
elsewhere. The following links will help you get started:

Raspberry Pi quick start³

OpenFrameworks Raspberry Pi setup⁴

Raspberry Pi and Serial Ports

There are multiple ways to set up a serial connection on the RPi. The first method
requires a USB to serial cable and involves a virtual serial communication port. If you
plug in your USB to serial cable, it should automatically create a software serial port .
The naming and location of virtual serial ports on the Raspberry Pi is similar to what
you’d find on any stardard Linux operating system. It’s also not unlike the setup found
on OSX, which has a unix-like foundation. If you’re coming from Windows however, it’s
a little different to the system of COM ports (COM1, COM2 etc) used there.

Assuming you’ve successfully installed your RPi, if you’ve booted into the graphical
environment, then open up a terminal window (double click the LXTerminal icon on

³http://www.raspberrypi.org/help/quick-start-guide/
⁴http://www.openframeworks.cc/setup/RPI

227

http://www.raspberrypi.org/help/quick-start-guide/
http://www.openframeworks.cc/setup/RPI

11 hardware

the desktop if you’re using Raspbian). Otherwise you’ll already be on the command-
line. Either way, type the following command:� �
ls -la /dev/ttyUSB*� �
This should list all of the serial devices on your system, starting from ttyUSB0 and
counting upwards. If you see such a device, your USB serial cable has been installed
correctly. Plugging in an Arduino to a Raspberry Pi will also create such a serial device,
so if you’re heading down that path this is where you should look to confirm it is
connected. The next thing you should check before moving on however is check what
permissions the serial port has. The Linux file system, much like OSX under the hood,
uses the concept of an “owner” of a file and what “group” it belongs to. If you are a
member of a file group, you’ll be able to access that file even if you are not its owner.
File permissions are there for security reasons, which is a good thing, but sometimes
they’ll trip you up. The above command should return with something like this:� �
crw-rw---- 1 root dialout 4, 64 Apr 6 23:03 /dev/ttyUSB0� �
In order to be able to read and write to this device normally, you’ll need to be amember
of group it belongs to, in this case, the “dialout” group.

To check which groups you belong to, type in the following command:� �
groups� �
This will return something like:� �
adm dialout cdrom sudo dip video plugdev lpadmin sambashare� �
The only thing of note here is to make sure that the group assigned to the serial port
(in this case “dialout”) is in your groups list. Typically the default “pi” user wil be a
member of this group. If it isn’t, just run the following command to add it, appending
your user login name at the end:� �
usermod -a -G dialout yourusername� �
Now you should be able to connect to other serial devices using your cable.

Raspberry Pi and GPIO

The RPi has a hardware serial port as well, literally two of the GPIO (General Purpose
Input Output) pins on the board are dedicated to hardware based serial transmit and
receive. They are listed as pins 8 and 10 or GPIO14 and GPIO15 in the documentation.
Don’t get confused by the two different names, one is relative to all the pins (8 and 10)
and the other is relative to the usable programmable pins (GPIO14 and GPIO15). You
might be inclined to use these if you’ve already used up the Pi’s USB ports, or youmight
want to use them to interface directly with electronics. A word of caution however to

228

11.6 Raspberry Pi - getting your OF app into small spaces

anyone connecting any voltages directly to the GPIO pins - there’s no protection here
against wrong or incorrect voltages. It’s nothing to be alarmed about, you’re just going
to be interfacing directly with the board and the advantages this opens up also exposes
you to potentially damaging the board if you do something wrong. Always check your
connections and voltages before hooking things up, its a good habit to get into and
will avoid frying things. Although truth be told, the only real way to learn is to make
mistakes, and there’s nothing that’ll imprint your memory more effectively than the
smell of burning silicon, but I digress…
Another thing to keep inmind when using the hardware serial port is that all of the GPIO
pins operate at around 3 volts. This means that a logic “high” will be approximately
3 volts, which differs from the more typical 5 volts used by most (but not all) Arduino
devices. There are quite a few sensors and other electronics that operate at 3 volts, and
a quick web search will point you in the right direction. This lower than normal voltage
is quite useful in low power electronic setups, where the slightly lower voltage will save
you a bit of energy, useful when running off batteries. However again be careful when
hooking up 3 volt based sensors directly to the Pi as it may be safer to include a bit of
protection between the electronics and the Pi to avoid damaging the board.
In order to compensate for the difference in voltage between a regular 5V Arduino
and the Pi, you’ll need a logic level converter between the two. A quick web search
should turn up a converter that’ll suit your needs, all you need to then do is hook the
two devices up to the converter, with the Pi connecting to the 3V side of the converter
and the Arduino hooked up to the 5V side. Remember to always make sure that the
serial transmit (or TX for short) from one board is connected to the serial receive (or
RX for short) on the other. You’ll need power and ground supplied from both sides
too. Once this is done, you’re ready to start communicating between the two. All the
openFrameworks procedures of communicating between an Arduino and OF, detailed
above, now apply. As a fail-safe test of whether the serial port is set up correctly,
you can always do a test on the Pi side by using the venerable minicom command-
line application. It’s a text only interface to the serial port, useful for quick low-level
serial debugging. It might feel a little archaic initially, but it does its job and it’s very
lightweight.
To install minicom, just open a terminal window and type the following:� �
sudo apt-get install minicom� �
You can then send characters to the Arduino via Minicom, and view them using the se-
rial monitor on the Arduino. Make sure both devices have the same baud rate. Launch
minicom using the following command (if operating at 9600 baud):� �
minicom -b 9600 -o -D /dev/ttyAMA0� �
where the number 9600 represents the baud rate and /dev/ttyAMA0 is the address of
our GPIO serial port. What you type into the minicom terminal screen should appear
on the Arduino serial monitor and vice versa.

229

11 hardware

Case Study: Raspberry PI as a master DMX controller

One of the nifty uses of a Raspberry Pi is to use it as a master DMX controller. It
takes up little space and sending serial data doesn’t require much processing power
so it’s a perfect candidate. Add to that the ability to control your OF app running on
the PI remotely via OSC, for example using an Android or IOS tablet, and you have a
fully fledged custom DMX set up which would otherwise require expensive commercial
software to replicate.

Headless Apps

Given that the Raspberry Pi can be viewed as a Swiss-army knife in the installation
world and has less processing power than a desktop computer, you may often find
yourself using it for a specific task and that task may not require any graphical out-
put (like churning out DMX commands for example). In this case, you can disable the
graphical capabilities of openFrameworks in order to streamline your application for
the task at hand. Using an application in this fashion is know as running the appli-
cation “headless”. In order to build a headless application (which works for all target
platforms, not just the RPi), all you’ll need to do is open up your project’s main.cpp
and change it to the following:� �
//ofSetupOpenGL(1024,768, OF_WINDOW); // <--------

comment out the setup of the GL context

// this kicks off the running of my headless app:
ofRunApp(new ofAppNoWindow());� �
Voila! Your application will now run without opening a graphical window. This can
be particularly useful when launch it from a script or the command-line, as well see
shortly.

Running your app on start-up

So, you’ve created an OF app that does some amazing stuff, and chances are you’ve
turned to this little over-achieving box because of it’s size and now you want to in-
corporate it into an installation. Ideally, technical installations, whether interactive
or not, should be super easy to set up and turn on, in order to place little demands
on gallery or event staff that might be minding the piece, and to reduce the chances
of something going wrong. Ideally, you’ll turn the power of the Pi on, and once it has
booted up your app will run. Additionally, if your app doesn’t make use of any graphics
or visual output, you might want to run it in what’s called “headless” mode, where the
graphical capabilities of OF are turned off. This will save power and reduce processor
demand on the Pi.

Running an application on start up can be done in many different ways on a Linux
based system such as the Pi. However here are a couple of methods that you could
use depending on your needs. Firstly, there’s a file called “rc.local” in amongst the Pi’s
system files where you can list applications that’ll be run on start up. In order to make

230

11.6 Raspberry Pi - getting your OF app into small spaces

use of this you’ll need to have the Pi booting into the command line. If the Pi is running
the GUI, this won’t work. To configure your Pi to start up in command-line mode, run
the So to make use of this method, open up a terminal and do the following:� �
sudo nano /etc/rc.local� �
This will open up this file using the command-line text editor “nano” and because it is
a system file you’ll need to use the “sudo” (short for Super User Do ….i.e. do something
as if you were the super user, a user with permission to modify system files) command
to give you access to an otherwise protected file. Once you’ve opened this file, after the
initial comments (lines beginning with ‘#’) add the following lines (replacing “myProject”
with the name of your app):� �
Auto run our application
/home/pi/openFrameworks/apps/myApps/myProject/bin/myProject &� �
Add these lines and then hit CTRL-X to save (hit ’Y to confirm that you want to overwrite
the current file). The ampersand indicates thatThen if all has gone well, next time
you reboot your application will launch. You won’t have any window decorations (such
as a border and buttons for minimise and close), but if you run the application full-
screen that won’t matter anyway, and you have the advantage of not running a GUI
environment which eats up resources on the otherwise busy Pi.

The other way to run applications is to use the “cron” system. Cron, if enabled (which
it normally will be by default on a Pi), is a daemon (or persistent application that runs
in the background) is a piece of software whose only purpose is to carry out actions at
particular times of the day. Essentially it’s a scheduler, much like a calendar reminder
system except instead of reminders you’ll be scheduling various tasks. All you need to
do then will be to tell Cron to run your app whenever the system boots up. All cron
actions are stored in special files which exist on the Pi in the /var/spool/cron/contab/
directory. You aren’t allowed to edit these files directly, you need to run a special
application called crontab which you can then use to create and modify those files.

In the case of starting our app on boot, all we need to do then is type the following in
a terminal (replace ‘pi’ with your username if not logged in with the default account):� �
sudo crontab -e -u pi� �
Then a file will open up and you can edit it in the same way as you would using nano
(if fact crontab is making use of nano in this process). Just add the following line to
the file:� �
@reboot /home/pi/openFrameworks/apps/myApps/myExampleApp &� �
Substitute the right app and and the right folder names depending on where your OF
app is located. You’ll need to get the full path right, so make sure it’s correct before

231

11 hardware

hitting CTRL-X to save the file. Once saved, again all you’ll need to do is reboot to
witness your app being kicked off on start-up. Presto!

In either case above, if you wanted to make sure that your app restarted upon crashing,
you could wrap the application in a shell script running a while loop, such as this:� �
#!/bin/bash
cd /home/pi/openFrameworks/app/myApps/myExampleApp/bin
while true; do

./myExampleApp
done� �
All you would need to do would be to copy the above code into a file and save it as
something like “myApp.sh”. Then make it executable by changing the file’s permissions:� �
chmod a+x myApp.sh� �
To test the shell script, just try running it in a terminal window by typing “./myApp.sh”
in the same directory as the script. If it launches successfully, you can then replace any
direct references to the app in the above auto-start examples with this script. Keep
in mind, the only way to fully kill the app will be to kill the process running this shell
script with a command such as� �
kill -9 1234� �
where you need to replace ‘1234’ with the process id (PID) of your script. The PID can
be found by typing� �
ps -A� �
in a terminal. This will list all running processes on the system. Anyhow, that’s enough
system administration for the moment, time to get creative instead.

232

12 Sound

by Adam Carlucci¹

This chapter will demonstrate how to use the sound features that you’ll find in open-
Frameworks, as well as some techniques you can use to generate and process sound.

Here’s a quick overview of the classes you can use to work with sound in openFrame-
works:

ofSoundPlayer provides simple access to sound files, allowing you to easily load and
play sounds, add sound effects to an app and extract some data about the file’s sound
as it’s playing.

ofSoundStream gives you access to the computer’s sound hardware, allowing you to
generate your own sound as well as react to sound coming into your computer from
something like a microphone or line-in jack.

As of this writing, these classes are slated to be introduced in the next minor OF version
(0.9.0):

ofSoundBuffer is used to store a sequence of float values, and perform audio-
related things on said values (like resampling)

ofSoundFile allows you to extract uncompressed ofSoundBuffers from files.

ofSoundObject is an interface for chaining bits of sound code together, similar to how
a guitarist might use guitar pedals. This is mostly relevant for addon authors or people
looking to share their audio processing code.

12.1 Getting Started With Sound Files

Playing a sound file is only a couple lines of code in openFrameworks. Just point an
ofSoundPlayer at a file stored in your app’s data folder and tell it to play.� �
class ofApp : public ofBaseApp {

...
ofSoundPlayer soundPlayer;

};

¹http://adamcarlucci.com

233

http://adamcarlucci.com

12 Sound

void ofApp::setup() {
soundPlayer.loadSound("song.mp3");
soundPlayer.play();

}� �
This is fine for adding some background music or ambiance to your app, but ofSound-
Player comes with a few extra features that are particularly handy for handling sound
effects.

“Multiplay” allows you to have a file playing several times simultaneously. This is great
for any sound effect which might end up getting triggered rapidly, so you don’t get stuck
with an unnatural cutoff as the player’s playhead abruptly jumps back to the beginning
of the file. Multiplay isn’t on by default. Use soundPlayer.setMultiPlay(true) to
enable it. Then you can get natural sound effect behaviour with dead-simple trigger
logic like this:� �
if (thingHappened)

soundPlayer.play();
}� �
Another feature built-in to ofSoundPlayer is speed control. If you set the speed faster
than normal, the sound’s pitch will rise accordingly, and vice-versa (just like a vinyl
record). Playback speed is defined relative to “1”, so “0.5” is half speed and “2” is
double speed.

Speed control and multiplay are made for each other. Making use of both simultane-
ously can really extend the life of a single sound effect file. Every time you change
a sound player’s playback speed with multiplay enabled, previously triggered sound
effects continue on unaffected. So, by extending the above trigger logic to something
like…� �
if(thingHappened) {

soundPlayer.setSpeed(ofRandom(0.8, 1.2));
soundPlayer.play();

}� �
…you’ll introduce a bit of unique character to each instance of the sound.

One other big feature of ofSoundPlayer is easy spectrum access. On the desktop plat-
forms, you can make use of ofSoundGetSpectrum() to get the frequency domain repre-
sentation of the sound coming from all of the currently active ofSoundPlayers in your
app. An explanation of the frequency domain is coming a little later in this chapter,
but running the openFrameworks soundPlayerFFTExample will give you the gist.

Ultimately, ofSoundPlayer is a tradeoff between ease-of-use and control. You get ac-
cess tomultiplay and pitch-shifted playback but you don’t get extremely precise control
or access to the individual samples in the sound file. For this level of control, ofSound-
Stream is the tool for the job.

234

12.2 Getting Started With the Sound Stream

12.2 Getting Started With the Sound Stream

ofSoundStream is the gateway to the audio hardware on your computer, such as the
microphone and the speakers. If you want to have your app react to live audio input
or generate sound on the fly, this is the section for you!

You may never have to use the ofSoundStream directly, but it’s the object that manages
the resources needed to trigger audioOut() and audioIn() on your app. These two
functions are optional members of your ofApp, like keyPressed(), windowResized()
and mouseMoved(). They will start being called once you implement them and initiate
the sound stream. Here’s the basic structure for a sound-producing openFrameworks
app:� �
class ofApp : public ofBaseApp {

...
void audioOut(float * output, int bufferSize, int nChannels);
double phase;

}

void ofApp::setup() {
phase = 0;
ofSoundStreamSetup(2, 0); // 2 output channels (stereo), 0 input

channels
}

void ofApp::audioOut(float * output, int bufferSize, int nChannels
) {

for(int i = 0; i < bufferSize * nChannels; i+=2) {
float sample = sin(phase); // generating a sine wave sample
output[i] = sample; // writing to the left channel
output[i+1] = sample; // writing to the right channel
phase += 0.05;

}
}� �
When producing or receiving audio, the format is floating point numbers between -
1 and 1 (the reason for this is coming a little later in this chapter). The sound will
arrive in your app in the form of buffers. Buffers are just arrays, but the term “buffer”
implies that each time you get a new one, it represents the chunk of time after the
previous buffer. The reason openFrameworks asks you for buffers (instead of individual
samples) is due to the overhead involved in shuttling data from your program to the
audio hardware, and is a little outside the scope of this book.

The buffer size is adjustable, but it’s usually a good idea to leave it at the default. The
default isn’t any number in particular, but will usually be whatever the hardware on
your computer prefers. In practice, this is probably about 512 samples per buffer (256
and 1024 are other common buffer sizes).

235

12 Sound

Sound buffers in openFrameworks are interleaved meaning that the samples for each
channel are right next to each other, like:� �
[Left] [Right] [Left] [Right] ...� �
This means you access individual sound channels in much the same way as accessing
different colours in an ofPixels object (i.e. buffer[i] for the left channel, buffer[i
+ 1] for the right channel). The total size of the buffer you get in audioIn() /
audioOut() can be calculated with bufferSize * nChannels.

An important caveat to keep in mind when dealing with ofSoundStream is that audio
callbacks like audioIn() and audioOut() will be called on a seperate thread from
the standard setup(), update(), draw() functions. This means that if you’d like to
share any data between (for example) update() and audioOut(), you need to make
use of an ofMutex to keep both threads from getting in each others’ way. You can see
this in action a little later in this chapter, or check out the threads chapter for a more
in-depth explanation.

12.3 Why -1 to 1?

In order to understand why openFrameworks chooses to represent sound as a contin-
uous stream of float values ranging from -1 to 1, it’ll be helpful to know how sound is
created on a physical level.

[aminimal picture showing themechanics of a speaker, reference: http://wiki.backyardbrains.com/images/5/54/Exp5_fig7.jpg
]

At the most basic level, a speaker consists of a cone and an electromagnet. The electro-
magnet pushes and pulls the cone to create vibrations in air pressure. These vibrations
make their way to your ears, where they are interpreted as sound. When the electro-
magnet is off, the cone is simply “at rest”, neither pulled in or pushed out.

[footnote] A basic microphone works much the same way: allowing air pressure to
vibrate an object held in place by a magnet, thereby creating an electrical signal.

From the perspective of an openFrameworks app, it’s not important what the sound
hardware’s specific voltages are. All that really matters is that the speaker cone is
being driven between its “fully pushed out” and “fully pulled in” positions, which are
represented as 1 and -1. This is similar to the notion of “1” as a representation of 100%
as described in the animation chapter, though sound introduces the concept of -100%.

[footnote] Some other systems use an integer-based representation, moving between
something like -65535 and +65535 with 0 still being the representation of “at rest”. The
Web Audio API provides an unsigned 8-bit representation, which ranges between 0 and
255 with 127 being “at rest”.

236

12.4 Time Domain vs Frequency Domain

A major way that sound differs from visual content is that there isn’t really a “static”
representation of sound. For example, if you were dealing with an OpenGL texture
which represents 0 as “black” and 1 as “white”, you could fill the texture with all 0s or
all 1s and end up with a static image of “black” or “white” respectively. This is not the
case with sound. If you were to create a sound buffer of all 0s, all 1s, all -1s, or any
single number, they would all sound like exactly the same thing: nothing at all.

[footnote] Technically, you’d probably hear a pop right at the beginning as the speaker
moves from the “at rest” position to whatever number your buffer is full of, but the
remainder of your sound buffer would just be silence.

This is because what you actually hear is the changes in values over time. Any individ-
ual sample in a buffer doesn’t really have a sound on its own. What you hear is the
difference between the sample and the one before it. For instance, a sound’s “loud-
ness” isn’t necessarily related to how “big” the individual numbers in a buffer are. A
sine wave which oscillates between 0.9 and 1.0 is going to be much much quieter than
one that oscillates between -0.5 and 0.5.

12.4 Time Domain vs Frequency Domain

When representing sound as a continuous stream of values between -1 and 1, you’re
working with sound in what’s known as the “Time Domain”. This means that each value
you’re dealing with is referring to a specific moment in time. There is another way of
representing sound which can be very helpful when you’re using sound to drive some
other aspect of your app. That representation is known as the “Frequency Domain”.

[image of a waveform vs an FFT bar graph, reference http://upload.wikimedia.org/wikipedia/commons/8/8c/Time_domain_to_frequency_domain.jpg
]

In the frequency domain, you’ll be able to see how much of your input signal lies in
various frequencies, split into separate “bins” (see above image).

You can transform a signal from the time domain to the frequency domain by a ubiq-
uitous algorithm called the Fast Fourier Transform. You can get an openFrameworks-
ready implementation of the FFT (along with examples!) in either the ofxFFT or ofxFft
addons (by Lukasz Karluk and Kyle McDonald respectively).

In an FFT sample, bins in the higher indexes will represent higher pitched frequencies
(i.e. treble) and the lower ones will represent bassy frequencies. Exactly which fre-
quency is represented by each bin depends on the number of time-domain samples
that went into the transform. You can calculate this as follows:� �
frequency = (binIndex * sampleRate) / totalSampleCount� �

237

12 Sound

So, if you were to run an FFT on a buffer of 1024 time domain samples at 44100Hz, bin
3 would represent 129.2Hz ((3 * 44100)/ 1024 ≈129.2). This calculation demon-
strates a property of the FFT that is very useful to keep in mind: the more time domain
samples you use to calculate the FFT, the better frequency resolution you’ll get (as
in, each subsequent FFT bin will represent frequencies that are closer together). The
tradeoff for increasing the frequency resolution this way is that you’ll start losing track
of time, since your FFT will be representing a bigger portion of the signal.

Note: A raw FFT sample will typically represent its output as Complex numbers², though
this probably isn’t what you’re after if you’re attempting to do something like audio vi-
sualization. A more intuitive representation is themagnitude of each complex number,
which is calculated as:� �
magnitude = sqrt(pow(complex.real, 2) + pow(complex.imaginary, 2))� �
If you’re working with an FFT implementation that gives you a simple array of float
values, it’s most likely already done this calculation for you.

You can also transform a signal from the frequency domain back to the time domain,
using an Inverse Fast Fourier Transform (aka IFFT). This is less common, but there is
an entire genre of audio synthesis called Additive Synthesis which is built around this
principle (generating values in the frequency domain then running an IFFT on them to
create synthesized sound).

The frequency domain is useful for many things, but one of the most straightforward
is isolating particular elements of a sound by frequency range, such as instruments in
a song. Another common use is analyzing the character or timbre of a sound, in order
to drive complex audio-reactive visuals.

The math behind the Fourier transform is a bit tricky, but it is fairly straightforward
once you get the concept. I felt that this explanation of the Fourier Transform³ does
a great job of demonstrating the underlying math, along with some interactive visual
examples.

12.5 Reacting to Live Audio

12.5.1 RMS

One of the simplest ways to add audio-reactivity to your app is to calculate the RMS
of incoming buffers of audio data. RMS stands for “root mean square” and is a pretty
straightforward calculation that serves as a good approximation of “loudness” (much
better than something like averaging the buffer or picking the maximum value). The

²http://en.wikipedia.org/wiki/Complex_number
³http://betterexplained.com/articles/an-interactive-guide-to-the-fourier-transform/

238

http://en.wikipedia.org/wiki/Complex_number
http://betterexplained.com/articles/an-interactive-guide-to-the-fourier-transform/

12.5 Reacting to Live Audio

“square” step of the algorithim will ensure that the output will always be a positive
value. This means you can ignore the fact that the original audio may have had “neg-
ative” samples (since they’d sound just as loud as their positive equivalent, anyway).
You can see RMS being calculated in the audioInputExample.� �
// modified from audioInputExample
float rms = 0.0;
int numCounted = 0;

for (int i = 0; i < bufferSize; i++){
float leftSample = input[i * 2] * 0.5;
float rightSample = input[i * 2 + 1] * 0.5;

rms += leftSample * leftSample;
rms += rightSample * rightSample;
numCounted += 2;

}

rms /= (float)numCounted;
rms = sqrt(rms);
// rms is now calculated� �
12.5.2 Onset Detection (aka Beat Detection)

Onset detection algorithms attempt to locate moments in an audio stream where an
onset occurs, which is usually something like an instrument playing a note or the im-
pulse of a drum hit. There are many onset detection algorithms available at various
levels of complexity and accuracy, some fine-tuned for speech as opposed to music,
some working in the frequency domain instead of the time domain, some made for
offline processing as opposed to realtime, etc.

A simple realtime onset detection algorithm can be built on top of the RMS calculation
above.� �
class class ofApp : public ofBaseApp {

...
float threshold;
float minimumThreshold;
float decayRate;

}

void ofApp::setup() {
...
decayRate = 0.05;
minimumThreshold = 0.1;
threshold = minimumThreshold;

}

239

12 Sound

void ofApp::audioIn(float * input, int bufferSize, int nChannels) {
...
threshold = ofLerp(threshold, minimumThreshold, decayRate);

if(rms > threshold) {
// onset detected!
threshold = rms;

}
}� �
This will probably work fine on an isolated drum track, sparse music or for something
like detecting whether or not someone’s speaking into a microphone. However, in
practice you’ll likely find that this won’t really cut it for reliable audio visualization or
more intricate audio work.

You could of course grab an external onset detection algorithm (there’s quite a few
addons available for it), but if you’d like to experiment, try incorporating the FFT into
your algorithm. For instance, try swapping the RMS for the average amplitude of a
range of FFT bins.

12.5.3 FFT

Running an FFT on your input audio will give you back a buffer of values representing
the input’s frequency content. A straight up FFT won’t tell you which notes are present
in a piece ofmusic, but you will be able to use the data to take the input’s sonic “texture”
into account. For instance, the FFT data will let you know how much “bass” / “mid” /
“treble” there is in the input at a pretty fine granularity (a typical FFT used for realtime
audio-reactive work will give you something like 512 to 4096 individual frequency bins
to play with).

When using the FFT to analyze music, you should keep in mind that the FFT’s bins
increment on a linear scale, whereas humans interpret frequency on a logarithmic
scale. So, if you were to use an FFT to split a musical signal into 512 bins, the lowest
bins (bin 0 through bin 40 or so) will probably contain the bulk of the data, and the
remaining bins will mostly just be high frequency content. If you were to isolate the
sound on a bin-to-bin basis, you’d be able to easily tell the difference between the
sound of bins 3 and 4, but bins 500 and 501 would probably sound exactly the same.
Unless you had robot ears.

[footnote] There’s another transform called the Constant Q Transform (aka CQT) that
is similar in concept to the FFT, but spaces its bins out logarithmically which is much
more intuitive when dealing with music. As of this writing I’m not aware of any
openFrameworks-ready addons for the CQT, but it’s worth keeping in mind if you feel
like pursuing other audio visualization options beyond the FFT.

240

12.6 Synthesizing Audio

12.6 Synthesizing Audio

This section will walk you through the creation of a basic musical synthesizer. A full
blown instrument is outside the scope of this book, but here you’ll be introduced to
the basic building blocks of synthesized sound.

A simple synthesizer can be implemented as a waveform modulated by an envelope,
forming a single oscillator. A typical “real” synthesizer will have several oscillators and
will also introduce filters, but many synthesizers at their root are variations on the
theme of a waveform + envelope combo.

12.6.1 Waveforms

Your synthesizer’s waveform will define the oscillator’s “timbre”. The closer the wave-
form is to a sine wave, the more “pure” the resulting tone will be. A waveform can be
made of just about anything, and many genres of synthesis⁴ revolve around techniques
for generating and manipulating waveforms.

A common technique for implementing a waveform is to create a Lookup Table contain-
ing the full waveform at a certain resolution. A phase index is used to scan through
the table, and the speed that the phase index is incremented determines the pitch of
the oscillator.

Here’s a starting point for a synthesizer app that we’ll keep expanding upon during this
section. It demonstrates the lookup table technique for storing a waveform, and also
visualizes the waveform and resulting audio output. You can use the mouse to change
the resolution of the lookup table as well as the rendered frequency.� �
class ofApp : public ofBaseApp {
public:

void setup();
void update();
void draw();

void updateWaveform(int waveformResolution);
void audioOut(float * output, int bufferSize, int nChannels);

std::vector<float> waveform; // this is the lookup table
double phase;
float frequency;

ofMutex waveformMutex;
ofPolyline waveLine;
ofPolyline outLine;

};

⁴http://en.wikipedia.org/wiki/Category:Sound_synthesis_types

241

http://en.wikipedia.org/wiki/Category:Sound_synthesis_types

12 Sound

void ofApp::setup() {
phase = 0;
updateWaveform(32);
ofSoundStreamSetup(1, 0); // mono output

}

void ofApp::update() {
ofScopedLock waveformLock(waveformMutex);
updateWaveform(ofMap(ofGetMouseX(), 0, ofGetWidth(), 3, 64,

true));
frequency = ofMap(ofGetMouseY(), 0, ofGetHeight(), 60, 700,

true);
}

void ofApp::draw() {
ofBackground(ofColor::black);
ofSetLineWidth(5);
ofSetColor(ofColor::lightGreen);
outLine.draw();
ofSetColor(ofColor::cyan);
waveLine.draw();

}

void ofApp::updateWaveform(int waveformResolution) {
waveform.resize(waveformResolution);
waveLine.clear();

// "waveformStep" maps a full oscillation of sin() to the size
// of the waveform lookup table
float waveformStep = (M_PI * 2.) / (float) waveform.size();

for(int i = 0; i < waveform.size(); i++) {
waveform[i] = sin(i * waveformStep);

waveLine.addVertex(ofMap(i, 0, waveform.size() - 1, 0,
ofGetWidth()),

ofMap(waveform[i], -1, 1, 0,
ofGetHeight()));

}
}

void ofApp::audioOut(float * output, int bufferSize, int nChannels) {
ofScopedLock waveformLock(waveformMutex);

float sampleRate = 44100;
float phaseStep = frequency / sampleRate;

outLine.clear();

242

12.6 Synthesizing Audio

for(int i = 0; i < bufferSize * nChannels; i += nChannels) {
phase += phaseStep;
int waveformIndex = (int)(phase * waveform.size()) %

waveform.size();
output[i] = waveform[waveformIndex];

outLine.addVertex(ofMap(i, 0, bufferSize - 1, 0,
ofGetWidth()),

ofMap(output[i], -1, 1, 0, ofGetHeight()));
}

}� �
Once you’ve got this running, try experimenting with different ways of filling up the
waveform table (the line with sin(...) in it inside updateWaveform(...)). For in-
stance, a fun one is to replace that line with:� �
waveform[i] = ofSignedNoise(i * waveformStep, ofGetElapsedTimef());� �
This will get you a waveform that naturally evolves over time. Be careful to keep your
waveform samples in the range -1 to 1, though, lest you explode your speakers and /
or brain.

12.6.2 Envelopes

We’ve got a drone generator happening now, but adding some volume modulation into
the mix will really bring the sound to life. This will let the waveform be played like an
instrument, or otherwise let it sound like it’s a living being that reacts to events.

We can create a simple (but effective) envelope with ofLerp(...) by adding the fol-
lowing to our app:� �
class ofApp : public ofBaseApp {

...
float volume;

};

void ofApp::setup() {
...
volume = 0;

}

void ofApp::update() {
...
if(ofGetKeyPressed()) {

volume = ofLerp(volume, 1, 0.8); // jump quickly to 1
} else {

243

12 Sound

volume = ofLerp(volume, 0, 0.1); // fade slowly to 0
}

}

void ofApp::audioOut(float * output, int bufferSize, int nChannels) {
...
output[i] = waveform[waveformIndex] * volume;
...

}� �
Now, whenever you press a key the oscillator will spring to life, fading out gradually
after the key is released.

The standard way of controlling an envelope is with a relatively simple state machine
called an ADSR, for “Attack, Decay, Sustain, Release”.

• Attack is how fast the volume reaches its peak after a note is triggered
• Decay is how long it takes the volume to fall from the peak
• Sustain is the resting volume of the envelope, which stays constant until the note
is released

• Release is how long it takes the volume to drop back to 0 after the note is released

A full ADSR implementation is left as an exercise for the reader, though this example
from earlevel.com⁵ is a nice reference.

12.6.3 Frequency Control

You can probably tell where we’re going, here. Now that the app is responding to key
presses, we can use those key presses to determine the oscillator’s frequency. We’ll
introduce a bit more ofLerp(...) here too to get a nice legato effect.� �
class ofApp : public ofBaseApp {

...
void keyPressed(int key);
float frequencyTarget;

}

void ofApp::setup() {
...
frequency = 0;
frequencyTarget = frequency;

}

void ofApp::update() {
...

⁵http://www.earlevel.com/main/2013/06/03/envelope-generators-adsr-code/

244

http://www.earlevel.com/main/2013/06/03/envelope-generators-adsr-code/

12.6 Synthesizing Audio

// replace the "frequency = " line from earlier with this
frequency = ofLerp(frequency, frequencyTarget, 0.4);

}

void ofApp::keyPressed(int key) {
if(key == 'z') {

frequencyTarget = 261.63; // C
} else if(key == 'x') {

frequencyTarget = 293.67; // D
} else if(key == 'c') {

frequencyTarget = 329.63; // E
} else if(key == 'v') {

frequencyTarget = 349.23; // F
} else if(key == 'b') {

frequencyTarget = 392.00; // G
} else if(key == 'n') {

frequencyTarget = 440.00; // A
} else if(key == 'm') {

frequencyTarget = 493.88; // B
}

}� �
Now we’ve got a basic, useable instrument!

Figure 12.1: Synthesis

A few things to try, if you’d like to explore further:

• Instead of using keyPressed(...) to determine the oscillator’s frequency, use

245

12 Sound

ofxMidi to respond to external MIDI messages. If you want to get fancy, try im-
plementing pitch bend or use MIDI CC messages to control the frequency lerp
rate.

• Try filling the waveform table with data from an image, or from a live camera
(ofMap(...) will be handy to keep your data in the -1 to 1 range)

• Implement a polyphonic synthesizer. This is one which uses multiple oscillators
to let you play more than one note at a time.

• Keep several copies of the phase index, and use ofSignedNoise(...) to slightly
modify the frequency they represent. Add each of the waveforms together in
output, but average the result by the number of phases you’re tracking.

For example:

� �
void ofApp::audioOut(float * output, int bufferSize, int nChannels) {

ofScopedLock waveformLock(waveformMutex);

float sampleRate = 44100;
float t = ofGetElapsedTimef();
float detune = 5;

for(int phaseIndex = 0; phaseIndex < phases.size();
phaseIndex++) {
float phaseFreq = frequency + ofSignedNoise(phaseIndex, t) *

detune;
float phaseStep = phaseFreq / sampleRate;

for(int i = 0; i < bufferSize * nChannels; i += nChannels) {
phases[phaseIndex] += phaseStep;
int waveformIndex = (int)(phases[phaseIndex] *

waveform.size()) % waveform.size();
output[i] += waveform[waveformIndex] * volume;

}
}

outLine.clear();
for(int i = 0; i < bufferSize * nChannels; i+= nChannels) {

output[i] /= phases.size();
outLine.addVertex(ofMap(i, 0, bufferSize - 1, 0,

ofGetWidth()),
ofMap(output[i], -1, 1, 0, ofGetHeight()));

}
}� �

246

12.7 Audio Gotchas

12.7 Audio Gotchas

12.7.1 “Popping”

When starting or ending playback of synthesized audio, you should try to quickly fade
in / out the buffer, instead of starting or stopping abruptly. If you start playing back
a buffer that begins like [1.0, 0.9, 0.8...], the first thing the speaker will do is
jump from the “at rest” position of 0 immediately to 1.0. This is a huge jump, and will
probably result in a “pop” that’s quite a bit louder than you were expecting (based on
your computer’s current volume).

Usually, fading in / out over the course of about 30ms is enough to eliminate these
sorts of pops.

If you’re getting pops in the middle of your playback, you can diagnose it by trying to
find reasons why the sound might be very briefly cutting out (i.e. jumping to 0, resulting
in a pop if the waveform was previously at a non-zero value).

12.7.2 “Clipping” / Distortion

If your samples begin to exceed the range of -1 to 1, you’ll likely start to hear what’s
known as “clipping”, which generally sounds like a grating, unpleasant distortion. Some
audio hardware will handle this gracefully by allowing you a bit of leeway outside of
the -1 to 1 range, but others will “clip” your buffers.

[clippedwaveform image, reference http://www.st-andrews.ac.uk/~www_pa/Scots_Guide/audio/clipping/fig1.gif
]

Assuming this isn’t your intent, you can generally blame clipping on a misbehaving
addition or subtraction in your code. A multiplication of any two numbers between -1
and 1 will always result in another number between -1 and 1.

If youwant distortion, it’s muchmore common to use a waveshaping algorithm⁶ instead
of trying to find a way to make clipping sound good.

12.7.3 Latency

No matter what, sound you produce in your app will arrive at the speakers sometime
after the event that triggered the sound. The total time of this round trip, from the
event to your app to the speakers is referred to as latency.

In practice, this usually isn’t a big deal unless you’re working on something like a mu-
sical instrument with very tight reaction time requirements (a drum instrument, for

⁶http://music.columbia.edu/cmc/musicandcomputers/chapter4/04_06.php

247

http://music.columbia.edu/cmc/musicandcomputers/chapter4/04_06.php

12 Sound

instance). If you’re finding that your app’s sound isn’t responsive enough, you can try
lowering the buffer size of your ofSoundStream. Be careful, though! The default buffer
size is typically the default because it’s determined to be the best tradeoff between
latency and reliability. If you use a smaller buffer size, you might experience “popping”
(as explained above) if your app can’t keep up with the extra-strict audio deadlines.

248

13 Network

by Arturo Castro¹

corrections by Brannon Dorsey

13.1 TCP vs UDP

TCP and UDP are 2 of themost used protocols to comunicate through a network. Indeed
TCP is so common that the suite of protocols on which internet is based is usually
called TCP/IP. The network protocols are classified in layers by something called the
OSI model² TCP and UDP belong to layer 4, the transport layer, and are usually the most
used in OF along with protocols from layer 7, the application protocol, like HTTP, FTP or
OSC that actually work on top of the other layers, for example HTTP and FTP on top of
TCP and OSC usually on top of UDP.

13.1.1 TCP

Transmission Control Protocol, is without doubt the most used network protocol on
the Internet, it is a protocol based on a connection, stream based and resistant to
errors, package reordering and package lose. Let’s see what all that means.

To understand all that we might need to know a bit about how a TCP/IP network works.
First of all we need to know that when we send something it’s usually divided in pack-
ages, each segment of the network might support a different package size so it might
subdivide our packages into smaller packages. A package is just a segment of the in-
formation we are trying to send plus some headers depending on the protocol we are
using. This division in packages is used among other things so it’s easier to recover
from errors. For example if we are sending a file and we sent it in one go, if some parts
of it get corrupted we’ll need to resend the full file again. Dividing it in packages and
adding some headers to them allows us to detect errors per package so we only need
to resend the corrupted packages instead of the whole thing.

When we send a package from one computer to another, even with a connection based
protocol like TCP, there’s no way of knowing in advance which path it’s going to arrive

¹http://arturocastro.net
²http://en.wikipedia.org/wiki/OSI_model

249

http://arturocastro.net
http://en.wikipedia.org/wiki/OSI_model

13 Network

through. On the Internet there’s several paths to arrive from one point to another
and packages go through whatever path is more optimal at the moment they are sent.
But that path might no longer be the ideal path some milliseconds later, so the next
package could go through a different route and even arrive before than packages that
were sent before.

Another problem is that packages might get corrupted on their way to the destination
computer, for example, because of electrical noise in some of the cables.

With all that let’s say we send packages ABCD in that order, it might be that at the other
end we get something like GCB: package A got corrupted and turned into G, packages
B and C arrived ok but in the wrong order, and package D was totally lost.

TCP is able to solve all of those problems. when TCP sends packages it numbers them
so that they can be correctly ordered when the other computer recieves them. It also
adds something called a CRC to each package that allows the other computer to know
if that package is corrupt.

When the destination receives a package and that package is correct, it sends a con-
firmation, also called an ACK. If after some time the sender hasn’t received that con-
firmation, it sends the package again. Whic solves the problem of corrupted and lost
packages.

This ACKs also allows to regulate the speed with which packages are sent so if the
clienthas less bandwith than the server, the server can slow down sending packages
till it arrives to the speed at which the client can receive them

As we see, using a TCP connection ensures that everything we send is received correctly
on the other side.

So why not just always use TCP? Well TCP has some limitations, for example TCP is
connection oriented, that means that in order to communicate with another machine
we need to open a connection explicitly to that machine and that machine only.

TCP is also stream oriented. That means that we cannot send individual messages and
expect them to arrive in one piece, they will arrive eventually but not exactly as we
sent them. For example if we send something like:� �

"Hello world!! this is an openFrameworks network message"� �
On the other side, the application using TCP, we may receive it like:� �

"Hello w"
"orld!"
"!this is a"
"n openFr"
"ameworks ne"
"twork mess"
"age"� �

250

13.1 TCP vs UDP

We can’t even be sure of which size those packages are going to have. There’s tricks
to send full messages, like adding a delimiter to them, for example openFrameworks
when doing:� �
tcpClient.send("Hello␣world!!␣this␣is␣an␣openFrameworks␣network␣

message");� �
Internally is sending:� �

"Hello world!! this is an openFrameworks network message[/TCP]\0"� �
The last \0 is actually added for compatibility reasons with old versions of flash! The
[\TCP] allows the other side to read the stream until it receives the full message. So
when you use:� �
string message = tcpServer.receive();� �
Internally ofxTCPCLient/Server will read the stream, keep the partial messages in mem-
ory, and wait until it gets the delimiter before returning a full message. This is done
transparently, but if you are interfacing with some other protocol coming from a non
OF application you might need to do this your self by using sendRaw() sendRawMsg()
receiveRaw() and receiveRawMsg() which don’t send or expect a terminator.

If the protocol you are working with uses TCP and a delimiter, chances are you might
be able to use this same trick by using:� �
tcpClient.setMessageDelimiter(myDelimiter);� �
Something important that you might know already: in order to connect applications
through a TCP/IP transport network protocol, you usually need, an IP address and a
port, the IP address is specific to each machine, the port to each application. So with
an IP/port pair we can define an application running in a specific address along all
Internet, almost. For example an application that is running a web server usually runs
on port 80, if the machine is being executed in has the IP 15.6.8.2, 15.6.8.2:80 defines
that web server among any other application running in any other machine in all the
Internet. So if we want to connect two machines, usually all we need to know is the IP
and port of the application running in the server and use it in the client to connect ot
it.

There’s an exception though. In most internal networks, like your home network for
example, there’s a router that connects the machines in that network to the Internet.
These routers usually do something called NAT: Network Address Translation. NAT was
invented because the IPv4 protocol has a limited number of IP addresses. Internally,
the network uses a reserved range of addresses: 192.168.x.x/24 or 10.x.x.x/32, which are
addresses that won’t be found directly on the internet. When we try to connect to an
external address it acts as a kind of proxy between your computer and the server that
we want to connect. The router has it’s own external address, and when it receives a

251

13 Network

response it translates the address and port in which it has received it to an internal
one, the one from our computer and sends the packages back to us.

While this is really practical, it means that if we have 2 computers behind NAT routers,
it’s imposible to open a connection between them (in principle) . There’s ways to
configure a router to send any package sent to a specific port to the same internal
address. There’s also libraries like ofxNice³ that allow you to do NAT transversal, but
that will only work using UDP.

13.1.2 UDP

UDP or User Datagram Protocol, is a non-connection datagram oriented, non error
resistant protocol. It is more or less the total opposite to TCP. We don’t need to establish
a connection, instead we just send messages to a specific address and port. As long as
there’s a process listening in that machine and that port it will receive the message.

Datagram oriented means that whatever we send, that fits in the package size sup-
ported by the network, by all the subnetworks in the path from one computer to an-
other, will arrive in one piece on the other side. In openFrameworks, if we do:� �
string message = "Hello␣world!!␣this␣is␣an␣openFrameworks␣network␣

message";
udpManager.SendAll(message, message.size());� �
The other side will receive that message in one piece. That is, if it receives it at all.

As we’ve said before, UDP is not resistant to errors so the packagemay not arrive. It may
get corrupted and there’s no way to recover it. If we send several packages they may
arrive in a different order then they were sent. UDP also doesn’t adjust for bandwidth,
so if one side is sending faster than what the other side can receive, or even if it fills
the local buffers while sending, some packages will get lost. What’s worse, we won’t
receive any advice that they got lost, nor in the sender nor in the receiver.

UDP might seem not useful but it has some advantages. Sometimes, we don’t mind
some packages being lost. For example, if we are sending a package every few frames
with the state of our application we don’t mind if sometimes we don’t receive one of
them. It’s also really hard to loose a package on a local network, but if you need total
reliability don’t trust UDP, just use TCP.

Some of the advantages of UDP come from the fact that is connectionless. That means,
among other things, that we can broadcast messages to all of the computers in the
local network using a broadcast address. To calculate the broadcast address we need
to know the IP address of the machine from where we are sending and the subnetwork
mask by doing a bit xor on them you get the broadcast address. For example, if the
IP address of our machine is 192.168.0.3, and our network mask is 255.255.255.0, the
³https://github.com/arturoc/ofxNice

252

https://github.com/arturoc/ofxNice

13.2 OSC

broadcast address will be 192.168.0.255. We can also use multicast if we are working
across networks although that’s more difficult to setup. We can reuse ports, so we can
have more than one process in the same machine using the same port, or use the
same port to send and receive…

UDP, as we mentioned before, allows us to do NAT transversal using some clever tricks
although is not something that can be done with raw UDP and requires a third party
library.

A case where UDP might be preferable over TCP is in very time critical applications, you
might have heard that UDP is faster than TCP. That is not exactly true, at least is not that
fast to make much difference. The real difference is that when using TCP, if a package
gets corrupted or lost the next messages won’t get delivered to the application until
the lost one is resent so that might introduce a slight delay. In most applications that
delay is not noticeable but in some very time critical applications we might prefer to
loose some packages than having to wait for them to be resnet. We are usually talking
of milliseconds here so as we’ve said it is usually not a problem.

Another possibility is implementing part of the error recovery in TCP while using UDP, for
example wemight notmind loosing some packages or getting some of them corrupt but
we care about the order in which they arrive, in those cases we can implement package
reordering in UDP simply by using a sequence number in each messsage and reorder
the packages in the destination by having a buffer so we can wait a little before actually
processing a message to see if any other message thath might arrive later needs to be
processed before.

In general use TCP if you need your messages to arrive no matter what, when loosing
even one package might be critical and UDP if you need some of the most advanced
uses like broadcasting, multicasting, NAT transversal, or when waiting for lost packages
to be resent, even a few milliseconds, might make be critical for the application while
loosing some packages is ok.

13.2 OSC

OSC is an application level protocol. It is of a higher level than UDP or TCP, and it’s main
characteristic is that it allows to send types like int, float, string… without worrying
about the underlying architecture of the sender and receiving machine. It’s usually
based on UDP so it has some of the same problems.

It’s usage in openFrameworks is really simple, so just check the examples in the exam-
ples/addons folder to know how it works.

Another advantage of using OSC is that there’s lots of commercial and open source
projects that support OSC. Using OSC you might be able to easily control some other

253

13 Network

software or receive results from it, for example you can have a Pure Data patch to gener-
ate audio and control it’s parameters from openFrameworks by sending OSC messages
to it.

As well as OSC there’s other application level protocols for specific applications and
it’s usually easier to use those than trying to use transport protocols like TCP or UDP.
For example streaming video is a really complex problem to solve but there’s protocols
like RTP that already solve or at least mitigate all the complications that it involves so
using a library that implements RTP will be easier than trying to send video directly
using TCP or UDP.

254

14 Advanced graphics

by Arturo Castro¹

corrections by Brannon Dorsey

14.1 2D, immediate mode vs ofPolyline/ofPath

Traditionally, in frameworks like openFrameworks or processing, the way of drawing
things has been something like:� �
void ofApp::draw(){

ofFill();
ofSetColor(255,0,0);
ofBeginShape();
ofVertex(20,20);
ofVertex(40,20);
ofVertex(40,40);
ofVertex(20,40);
ofEndShape(true);

}� �
openFrameworks version

Which will draw a red square of side 20 at 20,20. For simple primitives like a rectangle
we can use ofRect(), but if we want to draw more complex shapes the above method
is common. This kind of syntax comes from the openGL equivalent:� �
void ofApp::draw(){

glColor4f(1.0,0.0,0.0,1.0);
glBegin(GL_TRIANGLE_FAN);
glVertex(20,20);
glVertex(40,20);
glVertex(40,40);
glVertex(20,40);
glEnd();

}� �
¹http://arturocastro.net

255

http://arturocastro.net

14 Advanced graphics

`GL version

However, that method is deprecated since OpenGL 3. The openFrameworks version
actually does something else. This is because while drawing a rectangle like that works
in triangle fan mode, if we try to draw something more complex (mostly any concave
shape), it won’t work. Because OpenGL only knows how to draw triangles, drawing
a concave shape needs one more step called tessellation. The tessellation process
involves converting a shape into several triangles before sending to the graphics card.

As we’ve said the GL syntax is now actually deprecated in openFrameworks if you are
using since OpenGL 3, through the programmable renderer, or if you are using openGL
ES (Android, iPhone, or ARM Linux in openFrameworks).

The openFrameworks version continues to work but it’s ineffective depending on what
we are doing. Internally, the openFrameworks version is tessellating the shape, then
storing all the triangles in an ofMesh, and then drawing that ofMesh. If you are using
openGL 3+ instead of an ofMesh that will be drawn through a VBO using an ofVboMesh,
since that’s the only possible way of drawing in newer openGL.

Tessellation is kind of slow, but also depending on the number of vertices our shape
has it doesn’t make much sense to send them to the graphics card every frame. The
paradigm that newer versions of openGL use is something like this: create the shape
once, upload it to the graphics card, and then draw it every frame without having to
reupload again, this is usually don through some kind of buffer in the graphics card,
usually vbo’s.

In openFrameworks, the ofPolyline and ofPath classes do this in 2D and ofVboMesh for
3D.

14.1.1 ofPolyline

ofPolyline, allows us to represent the contour of a shape. The equivalent to the previ-
ous example using a polyline would be something like:� �
//ofApp.h

ofPolyline polyline;

//ofApp.cpp

void ofApp::setup(){
polyline.lineTo(20,20);
polyline.lineTo(40,20);
polyline.lineTo(40,40);
polyline.lineTo(20,40);
polyline.close();

}

256

14.1 2D, immediate mode vs ofPolyline/ofPath

void ofApp::draw(){
polyline.draw();

}� �
Now, instead of calculating the vertices every frame, we are creating them once in setup
and drawing them every frame.

However, an ofPolyline still sends its vertices to the graphics card. ofPolyline is really
a class meant to be used to do operations over polylines, like simplifications, smooth-
ing… Also ofPolyline can only draw outlines, not filled shapes. ofPath is the recom-
mended way of drawing shapes.

14.1.2 ofPath

ofPath is a complex class internally, it would be the equivalent of an ofImage for 2D
geometry. The same way that an ofImage holds a copy of the image in RAM as an ofPix-
els and a copy in the GPU as an ofTexture, an ofPath contains several representations
of the geometry. It’s use is simple, and pretty similar to ofPolyline. It follows the same
paradigm of creating the shape once and drawing it multiple times:� �
//ofApp.h

ofPath path;

//ofApp.cpp

void ofApp::setup(){
path.moveTo(20,20);
path.lineTo(40,20);
path.lineTo(40,40);
path.lineTo(20,40);
path.close();

}

void ofApp::draw(){
path.draw();

}� �
Unlike ofPolyline, ofPath draws filled shapes by default. As you may have noticed by
now, ofFill/NoFill doesn’t effect ofPolyline or ofPath. That’s because they also follow
the more modern openGL paradigm where most global state values are deprecated.
For example if you use openGL 3+, glColor4f or glLineWidth don’t exist anymore.
Instead, you can set the color per vertex on every shape or use a shader to specify a
color or line thickness. We’ll see this when tallking about ofMesh.

257

14 Advanced graphics

ofPath allows us to specify if we want to draw it with outline, fill, color, and width per
path, so those properties are local to each path instead of specifying them globally:� �
//ofApp.h

ofPath path;

//ofApp.cpp

void ofApp::setup(){
path.moveTo(20,20);
path.lineTo(40,20);
path.lineTo(40,40);
path.lineTo(20,40);
path.close();
path.setStrokeColor(ofColor::blue);
path.setFillColor(ofColor::red);
path.setFilled(true);
path.setStrokeWidth(2);

}

void ofApp::draw(){
path.draw();

}� �
This avoids several problems, for example when using global colors, a function needs
to store the current color, draw something, and then restore the previous color. Storing
the color of a shape in the same object makes it easier to draw several things without
having to care about the global color or keeping the global state as it was.

Globals in programming are usually a bad idea, and the way openGL has worked untill
now was heavily based on globals. Associating every attribute of a shape to the object
that represents it solves several problems and is a more object oriented way of doing
things.

ofPath packages even more interesting stuff. For example, when we draw a path the
first time, ofPath internally calculates it’s tessellation and stores it in an ofVboMesh,
keeping its vertices in the GPU. If the vertices haven’t changed when we draw an ofPath
the next time, the vertices don’t need to be uploaded again to the graphics card. This
makes things really fast.

You can actually access that tessellation using:� �
//ofApp.h

ofPath path;
ofVboMesh tessellation;

//ofApp.cpp

258

14.1 2D, immediate mode vs ofPolyline/ofPath

void ofApp::setup(){
path.moveTo(20,20);
path.lineTo(40,20);
path.lineTo(40,40);
path.lineTo(20,40);
path.close();
path.setStrokeColor(ofColor::blue);
path.setFillColor(ofColor::red);
path.setFilled(true);
path.setStrokeWidth(2);
tessellation = path.getTessellation();

}

void ofApp::draw(){
tessellation.drawWireframe();

}� �
The tessellation only represents the fill of our shape. If the path has no fill, it’ll return
an empty mesh.

We can also access the outlines of an ofPath as a vector of ofPolylines using
path.getOutline()

Advanced note: ofPath works with similar API to other formats and libraries
for 2D drawing, like SVG, cairo, or nvidia’s path rendering openGL extension.
That makes it easier to use it not only to draw to the screen using openGL
but also to other formats like vectorial formats like PDF or SVG through the
cairo renderer in openFrameworks. The use of the cairo renderer is outside
of the scope of this chapter, but the important thing to know is that ofPath
stores primitives in their original format as ofPath::Commands. Those com-
mands are things like lineTo, bezierTo… and usually end up decomposed in
polylines, and later on tesselated if we want to draw them as filled shapes.
That’s mainly because openGL doesn’t know how to decompose things like a
bezier into line segments or tessellate a shape but other formats like an SVG
or PDF do. When rendering through the cairo renderer ofPath won’t decom-
pose or tessellate shapes. Instead it will just send the original primitives
to the renderer which will later scale well no matter how big or small we
want to show them. Usually we don’t need to be aware of this, since open-
Frameworks will know internally which kind of representation of ofPath it’s
better to use. If you are working with openGL only there’s a flag that can be
activated path.setMode(ofPath::POLYLINES) which will make that path
override the creation of primitives and work directly with ofPolylines which
can be slightly faster in certain cases, mostly if you are creating a really
high number of paths and modifying them frequently.

259

14 Advanced graphics

14.2 3D

The same way that we have objects to create 2D shapes and draw them later, there’s
similar classes to work with 3D like ofMesh, ofVboMesh, and of3dPrimitive. Before
looking at them, let’s see a another topic related to how things are done in the newest
versions of openGL and learn the openFrameworks equivalent.

14.2.1 Transformation matrices

If you’ve worked with processing, openFrameworks or similar frameworks you are prob-
ably used to position things in the screen doing something like:� �
ofTranslate(20,20);
ofRotate(45);
ofRect(20,20,20,20);� �
This draws a square rotated 45 degrees around it’s top-left corner. Usually you would
enclose that between ofPush/PopMatrix so later drawings won’t be affected by the
transformations that we’ve just applied.

This comes from the openGL equivalent:� �
glTranslatef(20,20);
glRotatef(45);
ofRect(20,20,20,20);� �
This is also deprecated since openGL 3. What!? “I can’t do use translate/rotate/s-
cale anymore?”, you might ask. Well, in openFrameworks you can still use the equiva-
lent ofTranslate/Rotate/Scale if you want, but that has a number of problems and
that’s why they’ve been deprecated. Let’s see why:

We’ve seen how, when drawing things inmostmodern versions of openGL, the paradigm
is to create the shape once and then draw it several times with transformations. Each
call to ofTranslate, Rotate, Scale, or the gl equivalents for that matter, are doing a
multiplication of 4x4 matrices. This is not really that slow, unless you are doing it tons
of times. But we can avoid it somehow. Instead of doing all of the multiplications of
the matrices every frame, we can use an ofMatrix4x4 for each shape we use, do all of
that shape’s transformations once (or every time the shape moves), and apply them
later when we want to draw that frame:� �
//ofApp.h
ofPath path
ofMatrix4x4 m;

//ofApp.cpp
void ofApp::setup(){

260

14.2 3D

path.moveTo(20,20);
path.lineTo(40,20);
path.lineTo(40,40);
path.lineTo(20,40);
path.close();
m.rotate(45);
m.translate(20,20);

}

void ofApp::draw(){
ofMultMatrix(m);
path.draw();

}� �
Now we are avoiding 1 matrix multiplications every frame. That’s not much really, and
probably for something like this is just easier to keep using ofTranslate and ofRotate,
but you get the idea. If we have hundreds of transformations, storing them only when
they change makes things faster.

Also if we encapsulate each geometry with it’s transformation by having objects that
contain an ofPath and an ofMatrix4x4 we’ll avoid confusing global states. Each shape
sets it’s transformations before drawing.

In openFrameworks, the classes that apply transformations still return the matrix to
it’s original state so things will work as before.

If you want to know more about how transformation matrices work you should check
out the chapter on mathematics. The purpose of this chapter is not so much to show
how they work, but rather the newest paradigms in the latest versions of openGL.

In openFrameworks, there’s a utility class called ofNode, that allows you to apply
complex transformations like set an object to look to another, set a hierarchy of
nodes… When working with 3D it’s useful to keep an ofNode along with every mesh
that represents it’s transformations, so when you draw each mesh, instead of using
ofTranslate, rotate, scale you can just apply the transformation of it’s node using
node.transformGL(). This will multiply the current matrix by the one in the node.
When you are done you can use node.restoreTransformGL()to go back to the
previous state.

The most important idea of this section is that when working with complex transfor-
mations, instead of using ofTranslate/Rotate/Scale, it is usually easier to implement
an ofNode associated to each mesh or shape that you draw. This is also much easier
for readability. For meshes, there’s a new class in openFrameworks since 0.8.0 called
of3dPrimitive, that internally has an ofVboMesh and an ofNode so you can use this
pattern in an easy way.

261

14 Advanced graphics

14.2.2 ofCamera

When using openGL, we always have a perspective matrix that affects how 3D objects
are projected into the 2d surface, that is the screen, to give appearance of 3D. There’s
several ways to setup that matrix, but usually we need to know the FOV. The FOV, or
field of view, is the angle that the virtual camera, that we are looking through, can see.
We also need the near and far clip planes. These define the distance at which things
begin and end to be drawn. Finally, we need the width and height of the viewport. All
of those parameters define a frustrum, a 6 sides polyhedra that defines the bounding
box of things that will appear in the screen as well as how they’ll be projected from 3D
into 2D.

We also have a second matrix, called the model view, which defines the location of
the virtual camera through which we look at the scene. The view matrix is actually
the inverse of the matrix that defines the position of the camera, so when we alter it
we actually transform the position, rotation and scale of things being drawn. It’s this
matrix that gets modified by default when we use ofTranslate, ofRotate and ofScale.
Again there’s more information about this in the maths chapter.

By default, openFrameworks sets a projection matrix with a FOV of 60, width and height
of the screen, and clip planes automatically calculated from the other parameters.
It then calculates a model view that “moves the virtual camera” back from 0,0 to a
position where the top left of the screen matches with 0,0 and the bottom right with
width,height.

In openGL however, by default, those matrices are set to the identity matrix which
makes the center of the screen (0,0), the top left corner (1,-1) and the bottom right
corner (-1,1). You might have noticed that, in openGL, the y coordinate grows upward
while in openFrameworks, it grows downwards. This is to avoid confusion and make
it easier to work with images or mouse coordinates in openFrameworks, as they also
grow downwards. Other libraries we use also follow that convention. Since 0.8.0 you
can change that by calling: ofSetOrientation(OF_ORIENTATION_DEFAULT,false)
being false a false vertical flip so y will grow upwards.

So most of the time, especially when working with 2D, these perspective settings are
enough. We can draw things and the coordinates will match nicely with the size of
the screen in pixels. When working with 3D though, we might need something more
complex, like moving the camera along a scene or changing the field of view… That’s
what ofCamera allows.

ofCamera is actually an ofNode, so you can do with it anything that you might do with
an ofNode. For instance, you can set it to look to another object, or you could add it
in a hierarchy of nodes so that when its parent moves it moves relatively to its parent
position… the ofNode in the end defines where the camera is and where it’s looking at,
which in turn is the inverse of the view matrix that will get uploaded to openGL.

On top of that, ofCamera allows you to set a perspective matrix. That’s the matrix that

262

14.2 3D

defines how things will be projected to the 2D screen. To use it, usually we set it up
like so:� �
//ofApp.h
ofCamera camera;

// ofApp.cpp

void ofApp::setup(){
camera.setFov(60); // this will actually do nothing since 60 is

the default
}

void ofApp::draw(){
camera.begin();
// draw something
camera.end();

}� �
When using an ofCamera, 0,0 will be at the center of the screen, and y will grow up-
wards. With the default settings, the top,left of the screen will be (-w/2,h/2) and the
bottom,right (w/2,-h/2).

As we see in the example to draw things as if they were looked at from the camera we
call camera.begin() draw them and then call camera.end() to stop using that camera
and go back to the perspective that openFrameworks sets by default, or whatever we
had setup before.

While our application runs, we can tweak the camera parameters in update to move
it, make it look at some object, rotate it, or even change the fov which will look like
changing the “zoom” of a real camera.

14.2.3 ofMesh

In openFrameworks, the ofMesh class allows us to represent a 3D model. Internally, it’s
just a bunch of vectors. Each vector represents one mesh attribute. Those attributes
are: vertices, colors, texture coordinates and normals. Each mesh should usually have
the same number of each of those attributes unless it’s not using one of them in which
case it’ll be empty.

For example to define a mesh that draws a red square we can do:� �
// ofApp.h

ofMesh mesh;

// ofApp.cpp

263

14 Advanced graphics

void ofApp::setup(){
mesh.addVertex(ofVec3f(20,20));
mesh.addColor(ofColor::red);
mesh.addVertex(ofVec3f(40,20));
mesh.addColor(ofColor::red);
mesh.addVertex(ofVec3f(40,40));
mesh.addColor(ofColor::red);
mesh.addVertex(ofVec3f(20,40));
mesh.addColor(ofColor::red);
mesh.setMode(OF_PRIMITIVE_TRIANGLE_FAN);

}

void ofApp::draw(){
mesh.draw();

}� �
or� �
// ofApp.h

ofMesh mesh;

// ofApp.cpp

void ofApp::setup(){
mesh.addVertex(ofVec3f(20,20));
mesh.addVertex(ofVec3f(40,20));
mesh.addVertex(ofVec3f(40,40));
mesh.addVertex(ofVec3f(20,40));
mesh.addColor(ofColor::red);
mesh.addColor(ofColor::red);
mesh.addColor(ofColor::red);
mesh.addColor(ofColor::red);
mesh.setMode(OF_PRIMITIVE_TRIANGLE_FAN);

}

void ofApp::draw(){
mesh.draw();

}� �
Remember that the mesh is just several vectors, one per attribute of the vertices so
every color we add is applied to the vertex in the same position, that way we can do
things like define gradients:� �
// ofApp.h

ofMesh mesh;

264

14.2 3D

// ofApp.cpp

void ofApp::setup(){
mesh.addVertex(ofVec3f(20,20));
mesh.addColor(ofColor::red);
mesh.addVertex(ofVec3f(40,20));
mesh.addColor(ofColor::red);
mesh.addVertex(ofVec3f(40,40));
mesh.addColor(ofColor::blue);
mesh.addVertex(ofVec3f(20,40));
mesh.addColor(ofColor::blue);
mesh.setMode(OF_PRIMITIVE_TRIANGLE_FAN);

}

void ofApp::draw(){
mesh.draw();

}� �
Same goes for texture coordinates and normals. Each of them applies, again, to the
vertex in the same position:� �
// ofApp.h

ofMesh mesh;
ofImage img;

// ofApp.cpp

void ofApp::setup(){
mesh.addVertex(ofVec3f(20,20));
mesh.addTexCoord(ofVec2f(0,0));
mesh.addVertex(ofVec3f(40,20));
mesh.addTexCoord(ofVec2f(20,0));
mesh.addVertex(ofVec3f(40,40));
mesh.addTexCoord(ofVec2f(20,20));
mesh.addVertex(ofVec3f(20,40));
mesh.addTexCoord(ofVec2f(0,20));
mesh.setMode(OF_PRIMITIVE_TRIANGLE_FAN);
img.loadImage("some20x20img.png");

}

void ofApp::draw(){
img.bind();
mesh.draw();
img.unbind();

}� �
When we add texture coordinates, we probably want to use a texture while drawing that
mesh, to use a texture we use bind() on an ofImage or ofTexture and call unbind()

265

14 Advanced graphics

when we are done using it. We can even draw several meshes that use the same tex-
ture by calling bind/unbind once and drawing all of them in between and it’s actually
recomended since changing the openGL state, the binded texture in this case, it’s rel-
atively slow.

We could even combine color and texture tinting the texture with the color we apply to
each vertex.

There’s more information about how ofMesh works in this tutorial².

14.2.4 ofVboMesh

ofVboMesh is a simple class that encapsulates a vbo and inherits from ofMesh. That
means that we can use it exactly the same as an ofMesh, that it is actually an ofMesh,
but when it’s drawn, instead of uploading all the vertices to the graphics card every
time call draw on it, it uploads them once when we draw for the first time and only
uploads them again if they change. Usually when working with openGL it is advised to
use ofVboMesh instead of ofMesh.

There’s a case where using an ofVboMesh might be slower, and that’s if we want to
draw an ofVboMesh, modify it’s vertices and then draw it again in the same frame. The
problem here is that openGL doesn’t really draw things as soon as we tell it to draw.
Instead, it stores all the drawing commands and then draws all of them at once and
in parallel with the execution of our program. When we try to draw a vbo, modify it’s
contents and then draw it again in the same frame, openGL would need to really draw
the vbo at that exact moment, which means drawing everything else up to that point.
That would slow things down a lot. If you need to do something like this, make a copy
of the vbo and modify the copy instead of the original. In general don’t draw, modify
and redraw a vbo in the same frame:� �
// ofApp.h

ofVboMesh mesh;

// ofApp.cpp

void ofApp::setup(){
mesh.addVertex(ofVec3f(20,20));
mesh.addVertex(ofVec3f(40,20));
mesh.addVertex(ofVec3f(40,40));
mesh.addVertex(ofVec3f(20,40));
mesh.setMode(OF_PRIMITIVE_TRIANGLE_FAN);

}

void ofApp::draw(){

²http://openframeworks.cc/tutorials/graphics/opengl.html

266

http://openframeworks.cc/tutorials/graphics/opengl.html

14.2 3D

mesh.draw();
mesh.getVertices()[1].x+=0.1;
mesh.draw(); // slow!!

}� �
instead do:� �
// ofApp.h

ofVboMesh mesh;
ofVboMesh mesh2;

// ofApp.cpp

void ofApp::setup(){
mesh.addVertex(ofVec3f(20,20));
mesh.addVertex(ofVec3f(40,20));
mesh.addVertex(ofVec3f(40,40));
mesh.addVertex(ofVec3f(20,40));
mesh.setMode(OF_PRIMITIVE_TRIANGLE_FAN);
mesh2 = mesh;

}

void ofApp::update(){
mesh.getVertices()[1].x+=0.1;
mesh2.getVertices()[1].x=mesh.getVertices()[1].x + 0.1;

}

void ofApp::draw(){
mesh.draw();
mesh2.draw(); // fast!!

}� �
14.2.5 of3dPrimitive

As we’ve mentioned before, of3dPrimitive is a helper class that encapsulates an
ofVboMesh and inherits from ofNode. You can call any method you would call on an
ofNode, because of how inheritance works, it is actually an ofNode so we can change
it’s position, rotate it, make it look to some other node, add it to a node hierarchy… And
when you call draw on it, it’ll draw the mesh it contains applying the transformation
defined by it’s node.

There’s several predefined 3D primitives, like ofPlanePrimitive, ofSpherePrimitive,
ofIcoSpherePrimitive or ofCylinderPrimitive which know about the particulars
of the geometry of the mesh they contain. This makes it easy to apply textures to it or
change the resolution of the mesh…

267

14 Advanced graphics

Or you can create your own using of3dPrimitive directly:� �
// ofApp.h

of3dPrimitive primitive;

// ofApp.cpp

void ofApp::setup(){
primitive.getMesh().addVertex(ofVec3f(20,20));
primitive.getMesh().addVertex(ofVec3f(40,20));
primitive.getMesh().addVertex(ofVec3f(40,40));
primitive.getMesh().addVertex(ofVec3f(20,40));
primitive.getMesh().setMode(OF_PRIMITIVE_TRIANGLE_FAN);

}

void ofApp::update(){
primitive.move(ofVec3f(10,0,0));

}

void ofApp::draw(){
primitive.draw();

}� �
Note: While the example above aims to show how to use of3dPrimitive to
create custom geometries while being simple enough to fit in this context,
usually is not a good idea to use of3dPrimitive for simple primitives like
the one above. Calculating the transformations of an ofNode is kind of
expensive in terms of CPU usage. For primitives with lots of vertices it’s
the way to go, but for something like the previous example it is usually just
faster to recalculate all the points in their new position using an ofVboMesh

268

15 That Math Chapter: From 1D to 4D

by Omer Shapira¹

NOTE: This chapter is formatted with MD and LaTeX. Github won’t render it properly.
Try stackedit.io² instead

15.1 How Artists Approach Math

Math is a curious thing in arts. Many artists reference it directly as inspiration for
their work, from Leonardo Da Vinci’s Vitruvian Man, through Escher’s different views
of fields of numbers, and many other highlighted, topical representations in art. It
is otherwise known as a tool for bringing order into most arts: musicians religiously
follow Chromatic Circles (which are just cyclic groups of order 12, Z/12Z), Architects
create rhythms in harmonic series, 1

2n or 1
3n , and product designers train their loved

ones to wake them up in the middle of the night and ask them questions about The
Golden Ratio, 1+

√
5

2 (Seriously guys, stop it). But just as it is important for artists to
appreciate the order that Mathematics can bring, it is significantly more important to
observe the chaos Mathematics contains.

Randomness, events in large scales and unpredictabilty were Mathematical concepts
that were inaccessible for rapid exploration until very recently. The concept of simula-
tion – letting a thing happen, bound to some conditions, on a massive scale – is some-
thing that computers enabled humans to explore. When Benoît Mandelbrot worked for
IBM, his attempt at printing the density map of a self-repeating sequence of complex
numbers – something that would have taken forever for a human hand and head –
resulted in a scientific measurement being reappropriated for its aesthetic value, in
what we now call Fractal Art³. The same conseqeunce, that people could create a draw-
ing faster than they could think, enabled an entire family of simulation arts, like the
tree-like structures generated from L-Systems⁴, concieved by Aristid Lindenmayer, and
many, many flavors of computer-generated biomimetic artifacts. It’s acceptable to call
these things Art, because the thought that mathematicians had done this deliberately
in their work would simply confuse the audience.

¹http://omershapira.com
²http://stackedit.io
³https://en.wikipedia.org/wiki/Fractal_art
⁴http://en.wikipedia.org/wiki/L-system

269

http://omershapira.com
http://stackedit.io
https://en.wikipedia.org/wiki/Fractal_art
http://en.wikipedia.org/wiki/L-system

15 That Math Chapter: From 1D to 4D

But just by picking up this book, any reader already knows better than to create this
distinction. Math is everywhere in Art, just like Art is everywhere in Math. When using
a brush or pen or chisel, we’re taking advantage of the hard work that nature is doing,
calculating physics, rendering things perfectly for us, all in real time. In the computer
world, none of that is true. Things like L-Systems had to be created for us to use,
because our hands can’t reach into the computer. If you’re doing any bit of digital art,
the math is happening somewhere, whether you control it or not. This chapter will
try to expose basic inner-workings of the black arts of graphics programming. I wish
I could make this chapter 5 times as long and include the really neat stuff, but that
would make this book too heavy to put in a rucksack.

15.2 About this Chapter

A Math chapter for a book about graphics will always miss out on many ideas. In fact,
there are entire books covering “math for graphics”, mostly consisting of references to
other books, focusing on a specific topic (like Linear Algebra, Multivariable Calculus,
Differential Geometry, and many other words mysteriously connected to other words).
This chapter must therefore be very concise about ideas. All topics here are explained
in a friendly way, but please - never fear googling a thing for which you need better
examples.

This chapter will be divided into ‘numbers of D’s’ : we’ll start from one dimension, and
slowly explore the possibilities enabled by the amount of dimensions we’re operating
in. We’ll explore concepts of scale and change and learn how much can be described
just with these two words. Depending on how you choose to read it, this chapter con-
tains hundreds years of Mathematical research, or in other words, several classes of
college math, so it’s worth bookmarking.

Note: When bringing math to innocent readers, most programming books will try to
explain the idea, not necessarily the exact implementation. This book is no different.
This chapter contains detailed breakdowns of concepts, but if you want to find out
what’s going on under the hood, there’s no alternative to reading the source code - in
fact, since all the math here is only a few lines long - it’s actually encouraged to have
a look at the source.

15.3 One Dimension: Using Change

Let’s start our journey by looking at the number line. It’s a stretch of numbers going to
infinity in both the positive and negative direction. Suppose we were ants or microbes,
so that we could stand on exactly one value here, and travel to any other value by
walking in that direction. That’s pretty much the definition of a dimension. It’s an

270

15.3 One Dimension: Using Change

infinite collection of values that are all accessible, and any value of it can be described
with one number. As you’re about to see, these properties are going to enable quite a
lot of options.

[GRAPHICS: The Number Line. Reference added]

15.3.1 Interpolation

15.3.1.1 Linear Interpolation: The ofLerp� �
float ofLerp(float start, float stop, float amt)� �
As Randall Munroe (the author of xkcd) once put it, if you see a number larger than 7
in your page, you’re not doing real math. To prove ourselves worthy, this part will only
involve numbers between 0 and 1.

Those of you that have already done a little time-based or space-based work have
probably noticed that you can often describe elements of your work as sitting on a
line between two known points. A frame on a timeline is at a known location between
00:00:00 and the runtime of the film, a scrollbar is pointing to a known location between
the beginning and the end of a page. That’s exactly what lerp does.

With the lerp function, you can take any two quantities, in our case start and stop,
and find any point between them, using amounts (amt) between 0 and 1. To be verbose:

lerp (a, b, t) = t · b + (1 − t) · a

15.3.1.1.1 Note: What does linear really mean? Engineers, Programmers and English
Speakers like to think of linear as anything you can put on a line. Mathematicians,
having to deal with all the conceptual mess the former group of people creates, define
it anything you can put on a line that begins at (0,0). There’s good reasoning behind
that, which we will see in the discussion about Linear Algebra. In the meantime, think
of it this way:

A Linear Transform takes any line that has a value 0 at the point 0 and
returns a line with the same property, f (x) = ax. If it returns a line value
different from 0 at x = 0, f (x) = ax + b, it’s an Affine Transform instead.

At this point you probably know, but it’s worth repeating: Those two transformations
may either change lines into lines, or in some degenerate cases, lines to points. For
example, f (x) = x2 is totally not linear.

271

15 That Math Chapter: From 1D to 4D

15.3.1.1.2 Exercise: Save NASA’s Mars Lander In 1999, an masterpiece of engineering
was making its final approach to Mars. All instruments were showing that the approach
distance matched the speed, and that it’s just about to get there and do some science.
But instead, it did something rather rude: it crashed into the red planet. An investiga-
tion made later by NASA revealed that while designing the lander, one team worked
with their test equipment set to centimetres, while the other had theirs set to inches.
By the way, this is all true.

Help the NASA teams work together: write a function that converts centimetres to
inches. For reference, 1in = 2.54cm. Test your result against three different real-world
values. Tip: Its much easier to start solving with pen and paper than it is with a key-
board.

Think:

1. Why can we use lerp outside the range of 0 and 1?
2. What would it take to write a function that converts inches into centimetres?

15.3.1.2 Affine Mapping: The ofMap� �
float ofMap(float value, float inputMin, float inputMax, float

outputMin, float outputMax, bool clamp = false)� �
In the last discussion, we saw how by using lerp, any value between two points can
be linearly addressed as a value between 0 and 1. That’s very convenient, and there-
fore the reason we build most of our arbitrary numerical ranges (ofFloatColor, for
example) in the domain of 0 and 1.

However, when dealing with real world problems, programmers run into domains of
values that they wish to map to other ranges of values, neither of which are confined
to 0 and 1. For example, someone trying to convert the temperature in Celsius to
Fahrenheit won’t be able to use a lerp by itself - the domain we care about isn’t
between 0 and 1. Surely, the way of doing that must involve a lerp, but it needs a little
help.

If we want to use the lerp function, we’re aiming to get it to the range between 0 and
1. We can do that by knocking inputMin off the input value so that it starts at 0, then
dividing by the size of the domain:

x = value − inputMin
inputMax − inputMin

Now that we’ve tamed the input domain to be between 0 and 1, we do the exact oppo-
site to the output: ofMap(value, inputMin, inputMax, outputMin, outputMax)
= value−inputMin

inputMax−inputMin · (outputMax − outputMin) + outputMin

272

15.3 One Dimension: Using Change

Here’s an example. Let’s say we’re given a dataset in Farenheit. Farenheit sets 0 to be
the freezing point of brine and 100 to be the body temperature of a slightly ill British
human (duh?). In order to do anythingwith that, we first need to convert that to Celsius,
which at least uses The Same Damn Substance™ for 0 and 100: Water. Now, we happen
to know that water freezes at 32f and boils at 212f, so we have the same exact objective
range, now it’s time to map. We’ll use an array for this:� �
vector<float> farenheitValues;
// we'll skip over the code that fills them up, as somebody else has

done it
vector<float> celsiusValues; //Sets up an empty C++ vector, which is

a dynamic array
for (int i = 0 ; i < farenheitValues.size() ; ++i){

celsiusValues.pushBack(ofMap(32, 212, 0, 100,
farenheitValues[i]));

}� �
Watch what we did here. We took the domain of 32 to 212 and converted it to a range
of 0 to 100. There are two things to note about that:

• In Mathematics, we often use the words domain and range as origin and target.
Using those terms allows us to introduce another concept we care about: Sepa-
ration of Concern. If we know that every input a function takes is guaranteed to
be in a certain domain, we can engineer it so it guarantees an output in a certain
range, and make sure it doesn’t fail. In fact, this is the mathematical definition
of a function:

A Function is a Mathematical object that maps every value of a certain do-
main to a single value of a certain range.

• We defined the range of 32 to 212 as two points we know on a line. The actual
range of temperatures is -459.67 (the absolute zero, in Farenheits) to somewhere
very, very large (known as the planck temperature) - it’s not very conventient to
calculate that. So instead of choosing the whoe range, we mapped a known area
of it to a known area of it in the range. We are allowed to use an ofMap() for
that, because the scale is linear. Some scales are not linear; For example, the
decibel (dB), commonly used in sound measurement, is logarithmic, so convert-
ing between a range of 0dB - 6dB to 6dB-15dB would not convey any meaning.

15.3.1.3 Range Utilities

15.3.1.3.1 Clamping You’ll notice that the previous explanation is missing the clamp
parameter. This may not matter to us if we’re using the ofMap function in the range
that we defined, but suppose we select a value smaller than inputMin: would it be
ok if the result was also smaller than outputMin? If our program is telling an elevator

273

15 That Math Chapter: From 1D to 4D

which floor to go to, that might be a problem. That’s why we add true to the tail of this
function whenever we need to be careful.

Just in case, oF offers another specific clamp function:� �
float ofClamp(float value, float min, float max)� �
15.3.1.3.2 Range Checking Two important functions we unjustly left out of this chap-
ter:� �
bool ofInRange(float t, float min, float max);� �
Tells you whether a number t is between min and max.� �
float ofSign(float n);� �
Returns the sign of a number, as -1.0 or 1.0. Simple, eh?

15.3.2 Beyond Linear: Changing Change

[mh: I recognize that you are trying to be general here by talking about change, but
at least throwing the word motion around as a type of change would give readers
something upon which to anchor the concept.]

So far we’ve discussed change that is bound to a line. But in Real Life™ there’s more
than just straight lines: For one, we can’t even describe periodic events with straight
lines If we need to describe the vibration of a guitar string [footnote: this example
sounds kinda old. Of course I meant “the wobble of a dubstep instrument”] or the
changing speed of a biliiard ball after impact, we’re going to need to use higher orders
of change.

In this discussion, we’re about to see how we can describe higher orders of complexity,
via a cunning use of lerps. You will see that some types of change can be reproduced
this way (like that billiard ball) - while other types of motion, like harmonic motion, will
need a separate mechanism. Keep in mind that some of the code here is conceptual,
not necessarily efficient.

15.3.2.1 Quadratic and Cubic Change Rates

Consider this function:� �
float quadratic (float t){

float a1 = ofLerp(t, 5, 8);
float a2 = ofLerp(t, 2, 9);

274

15.3 One Dimension: Using Change

float b = ofLerp(t, a1, a2);
return b;
}� �

This function used a defined range and a parameter to create a1, then used another
defined range with the same parameter to create a2. Their result looks surprising:

[GRAPHIC: QuadraticSpline.pdf to be processed]

We’ve done something remarkable here. We used the way one parameter changes on
two fixed lines to control a third, totally mobile line, and draw one point on it at each
point in time between 0 and 1. In Mathspeak, it looks like this:

lerp (t, lerp (t, 5, 8) , lerp (t, 2, 9)) =
lerp (t, 8 · t + 5 · (1 − t) , 9 · t + 2 · (1 − t))

= (9 · t + 2 · (1 − t)) · t + (8 · t + 5 · (1 − t)) · (1 − t)

=
(
9t2 + 2t − 2t2

)
+ (8t + 5 − 5t) −

(
8t2 + 5t − 5t2

)
=4t2 + 5

Something interesting happened here. Without noticing, we introduced a second order
of complexity, a quadratic one. Seriously, give it a second look, draw the entire process
on paper. It’s remarkable.

The same manipulation can be applied for a third order:� �
float cubic (float t){

float a1 = ofLerp(t, 5, 8);
float a2 = ofLerp(t, 2, 9);
float a3 = ofLerp(t, 3, -11);
float a4 = ofLerp(t, -2, 4);
float b1 = ofLerp(t, a1, a2);
float b2 = ofLerp(t, a3, a4);
float c = ofLerp(t, b1, b2);
return c;
}� �

We’ll skip the entire solution, and just reveal that the result will appear in the form of

at3 + bt2 + ct + d

See the pattern here? The highest exponent is the number of successive ofLerps we
applied, i.e. the number of times we nested the lerp function in itself.

15.3.2.1.1 …And So On The general notion in Uni level Calculus is that you can do
anything if you have enough of something. So fittingly, there’s a curious little idea

275

15 That Math Chapter: From 1D to 4D

in Mathematics which allows us, with enough of these nested control points, to ap-
proximate any curve segment we can imagine. In the original formulation of that idea
(called a Taylor Series), we only reach a good approximation if the amount of degrees
(successive lerps we applied) is close to infinity.

In Computer Graphics, as you’re about to see - 3 is close enough.

15.3.3 Splines

What we’ve done in the previous chapter is really quite remarkable. We have built a
rig of points, on top of which we built a rig for controlling these points in pairs, and we
continued to do so until we ended up with one parameter, t, to control them all, sub-
sequently controlling the process of drawing. In the domain we defined all of that to
happen, we can clearly make this a physical metaphor: for example, a bunch of articu-
lating sliderules connected to eachother at a certain point. However, for reasons you’re
about to see, Mathematicians will often shy away from the description of polynomials
as a physical metaphor.

The reason is what happens to polynomials soon after they step away from their engi-
neered control points. Outside the range of control, every polynomial will eventually
go to infinity - which is a broad term, but for us designers it means that slightly off
it’s range, we’ll need a lot more paper, or computer screen real estate, or yarn, or
cockroaches (true story⁵) in order to draw it.

[GRAPHICS: PolynomialToInfinity.pdf, to be processed]

So instead of using polynomials the way they are, some mathematicians thought of a
clever thing to do: use only the good range (one that’s between the control points), wait
for the polynomial to do something we don’t like (like turn from positive to negative),
then mix it with another polynomial. That actually works pretty well:

[GRAPHICS: Spline.ai - Please talk to me before processing this]

In the illustration, we’ve taken a few parts of the same cubic (3rd degree) polynomial,
moved it around and scaled it to taste, and added all of them together at each point
(let’s call it ‘mixing’).

The resulting curve is seamless and easy to deal with. It also carries some sweet prop-
erties: using it, one can use the absolute minimum of direction changes to draw any
cubic polynomial between any two points. [mh: maybe add another sentence here to
unpack this] In other words, it’s smooth.

These properties make this way of creating curves pretty popular in computer graph-
ics, and you may find its variants under different names, like Beziér Curves or Spline
Curves. The code for implementing this is a little long and tedious in C++, so this chap-
ter won’t go into it - but in case you were wondering, it’s just the same code for making

⁵http://www.andrewcerrito.com/itpblog/itp-winter-show-nyc-food-crawl/

276

http://www.andrewcerrito.com/itpblog/itp-winter-show-nyc-food-crawl/

15.3 One Dimension: Using Change

polynomials we discussed above, only with a lot of if statements to check if t is in the
correct range.
Using the curve functions in openFrameworks is pretty straightforward: All you have to
do is start from a point, and then add a destination, along with the control points [mh:
worth defining a control point somewhere in here] to reach it:� �
//The beginning point
line.addVertex(ofPoint(200, 400));
//A sequence of two control points and a destination:
//control 1's x and y, control 2's x and y, and the destination
line.bezierTo(100, 100, 800, 100, 700, 400);� �

This generates this image:
This is just one example of use though. All of the different combinations are docu-
mented extensively in the Advanced Graphics chapter.

15.3.4 Tweening

So far we’ve learned how to use a bunch of control points to create an interesting curve
in space. We’ve used our parameter t to simulate the time it takes to draw each point
on the curve. We also implicitly assumed that time runs only in the period that we let
it run in, in the case of our examples, between 0 and 1. But we never really tested what
it looks like to run all of that in real time.
[GRAPHICS: Smoothstep.ai to be processed] The smoothstep function, f (x) = 3x2 −
2x3, used to create a smooth transition between 0 and 1
Apparently, it’s not that different from running it through space. By looking at the x
dimension of this graph as time and the y dimension of this graph as a value for our
creation, we can see some patterns of animation forming. The trick is simple: think
of all of the values that need to change in your animation, and control them using
functions.
Tweening is not yet a standard part of the openFrameworks library. In the meantime,
some nice utility functions for tweening are available in the ofxTween library.

277

15 That Math Chapter: From 1D to 4D

15.3.4.1 Other Types of Change

This chapter provides examples of rates of change achievable by using linear change
in succession. But there’s so much more to rates of change that can’t fit here - for
example, trigonometric functions (sines and cosines) can only be approximated using
polynomials, but in order to actually describe them, we need to get into a discussion
about frequency. The topic of change is so broad that there’s not a single branch
of mathematics that deals with it – it encompases most of those I can think of. In the
Sound chapter, you’ll learn a litte more about dealing with frequency. Until then, you’ve
already acquired a toolset that allows you to do a lot.

15.4 More Dimensions: Some Linear Algebra

Until now, we explored several ideas on how to change what’s going on the number
line. That’s cool, but we want to know how to do graphics, and graphics has more than
one dimension. Our ancient Mathematician ancestors (Just kidding, most important
Mathematicians die before 30. Not kidding) also faced this problem when trying to
address the space of shapes and structures, and invented some complex machinery
to do so. The fancy name for this machinery is Linear Algebra, which is exactly what it
sounds like: using algebraic operations (add and multiply, mostly), in order to control
many lines.

In this part you’re going to learnmany concepts in how to store andmanipulate multidi-
mensional information. You’ll later be able to use that information to control realtime
3d graphics using OpenGL, and impress the opposite (or same) sex with your mastery
of geometry.

15.4.1 The Vector

You may have heard of vectors before when discussing directions or position, and after
understanding that they can represent both, may have gotten a little confused. Here’s
the truth about Vectors™:

A vector is just an array that stores multiple pieces of the same type of
information.

Seriously, that’s all it is. Quit hiding.

This simplicity is also their great power. Just like the number 5 can be used to describe
five Kilometres, the result of subtracting 12 and 7, or the number of cookies in a jar -
the same works with vectors.

278

15.4 More Dimensions: Some Linear Algebra

It’s up to the user of that mathematical object to choose what it is used as. The vector

v =

 5
−3
1

can represent a point in space, a direction of a moving object, a force applied to your
game character, or just three numbers. And just like with numbers, algebraic operations
such as addition and multiplication may be applied to vectors.

Oh, but there’s a catch. You see, everyone was taught what a + b means. In order to go
on with vectors, we need to define that.

15.4.1.1 Vector Algebra

Generally speaking, when dealing with Algebra of numerical structures that aren’t num-
bers, we need to pay close attention to the type of things we’re cooking together. In
the case of vectors, we’ll make a distinction between per-component and per-vector
operations.

15.4.1.1.1 Scalar Multiplication The product between a vector and a scalar is defined
as:

a

 x
y
z

 =

 ax
ay
az

That falls into the category of per-vector operations, because the entire vector under-
goes the same operation. Note that this operation is just a scaling.� �
ofVec3f a(1,2,3);
cout << ofToString(a * 2) << endl;
//prints (2,4,6)� �
15.4.1.1.2 Vector Addition Adding vectors is pretty straightforward: it’s a per-
component operation:

 x1
y1
z1

+

 x2
y2
z2

 =

 x1 + x2
y1 + y2
z1 + z2

279

15 That Math Chapter: From 1D to 4D

� �
ofVec3f a(10,20,30);
ofVec3f b(4,5,6);
cout << ofToString(a + b) << endl;
//prints (14,25,36)� �
15.4.1.1.2.1 Example: ofVec2f as position Vector addition serves many simple roles.
In this example, we’re trying to track our friend Lars as he makes his way home from
a pub. Trouble is, Lars is a little drunk. He knows he lives south of the pub, so he
ventures south; But since he can’t walk straight, he might end up somewhere else.� �
/* in testApp.h: */
ofVec2f larsPosition;
void larsStep(ofVec2f direction);

/* in testApp.cpp: */
void testApp::setup(){

larsPosition = ofVec2f(ofGetWidth() / 2., ofGetHeight() / 3.);
}

void testApp::update(){
if (larsPosition.y < ofGetHeight * 2. / 3.){

//As Lars attempts to take one step south,
//He also deviates a little to the right,
//or a little to the left.
ofVec2f nextStep(ofRandom(-1.,1.),1.);
larsStep(nextStep);

}

void ofApp::larsStep(ofVec2f direction){
position += direction;

}

void testApp::draw(){
//Draw Lars any way you want. No one's judging you.

}� �
15.4.1.1.3 Note: C++ Operator Overloading [mh: this proke the flor a bit for me, so
I’d recommend pushing it later]
Just like we had to define the meaning of a product of a scalar quantity and a vector,
programming languages - working with abstract representations of mathematical ob-
jects, also need to have definitions of such an operation built in. C++ takes special
care of these cases, using a feature called Operator Overloading: defining the * oper-
ation to accept a scalar quantity and a vector as left-hand side and right-hand side
arguments:

280

15.4 More Dimensions: Some Linear Algebra

� �
ofVec3f operator*(float f, const ofVec3f& vec) {

return ofVec3f(f*vec.x, f*vec.y, f*vec.z);
}� �
The same is defined, for example, between two instances of ofVec3f:� �
ofVec3f ofVec3f::operator+(const ofVec3f& pnt) const {

return ofVec3f(x+pnt.x, y+pnt.y, z+pnt.z);
}� �
naturally representing the idea of vector addition.

The basic arithmetic operations, +, -, *, /,+=, -=, *=, /=, exist for both combinations
of ofVec2f, ofVec3f and ofVec4fs and between any vector object and a scalar quan-
tity. Whenever an operation is postfixed with =, it modifies the left-hand side with the
operation, and only then. The operations +,-,*,/ will always return a copy.

Some excellent examples of operator overloading done right exist in the source files
for the ofVec types. It’s encouraged to check them out.

Warning: Overloading operators will make you go blind. Programmers use operators
without checking what they do, so bugs resulting from bad overloads take a long time
to catch. If the expression a + b returns a reference instead of a copy, a null instead
of a value, or modifies one of the input values – someone will use it one day, and that
someone will cry for many days. Unless the operator can do one arithmetic thing and
that alone, do not overload it with a different meaning. openFrameworks may or may
not have a feature that tweets for you whenever you’ve written a silly operator overload.
No one knows⁶.

15.4.1.1.4 Distance Between Points � �
float ofVec3f::distance(const ofVec3f& pnt) const
float ofVec3f::squareDistance(const ofVec3f& pnt) const
float ofVec3f::length() const
float ofDist(float x1, float y1, float x2, float y2);
float ofDistSquared(float x1, float y1, float x2, float y2);� �
Let’s start by a definition. You may remember the Pythagorean Theorem, stating what
the length of a line between point a and b is:

Distance
([

xa

ya

]
,

[
xb

yb

])
=
√

(xb − xa)2 + (yb − ya)2

Here’s the good news: It’s the exact same definition in three dimensions! just add the

⁶https://code.google.com/p/keytweeter/

281

https://code.google.com/p/keytweeter/

15 That Math Chapter: From 1D to 4D

z term.

Distance

 xa

ya

za

 ,

 xb

yb

zb

 =

√
(xb − xa)2 + (yb − ya)2 + (zb − za)2

Vector Length, then, can be naturally defined as the distance between the vector and
the point (0, 0, 0):

Length

 x

y
z

 =

√
x2 + y2 + z2

And that’s exactly what using .length() as a property of any ofVec will give you.

15.4.1.1.5 Vector Products: There’s More Than One So you’re multiplying two num-
bers. Simple, right? Five million and seven times three equals something you know.
Even if you need a calculator for the result, you still know it’s a number that’s not the
case with vectors. If we just want to resize vectors (the way we do with numbers), we
multiply a vector by a scalar and it grows. But what does it mean, geometrically, to
multiply by a vector?

If we were to follow the per-component convention that we created, we would get an
operation like this:� �
cout << ofToString(ofVec3f(1,2,3) * ofVec3f(1,2,3)) << endl;
//prints (1,4,9)� �
It’s also known as the Hadamard product. It’s intuitive, but not particularly useful. One
case it is useful for is if we want to scale something individually in every dimension.

In the next section we describe something more helpful.

15.4.1.1.6 The Dot Product � �
float ofVec3f::dot(const ofVec3f& vec)� �
The dot product of two vectors has a definition that’s not too clear at first. On one
hand, the operation can be defined as

va • vb = xa · xb + ya · yb + za · zb

which is really easy to implement (in fact, graphics cards have special circuitry for doing
just that!). On the other hand, it can also bet defined as

va • vb = ∥va∥ · ∥vb∥ · cos θ

where θ is the angle between the two vectors. Soon you’ll see that this is a rather lucky
coincidence. In the meantime, here’s how you shoud remember dot products:

282

15.4 More Dimensions: Some Linear Algebra

A dot product of a and b reflects how one vector projects in the other vec-
tor’s direction.

Hold it. That’s not the end of the story. As you can see, the ∥va∥ · ∥vb∥ part of ∥va∥ ·
∥vb∥ · cos θ should tell you that both vectors’ lengths have equal parts in determining
the final size of the thing, but in most practical cases, you’ll be using dot products to
determine either vector length or angles between vectors.

That’s why dot products are such an amazing coincidence: If you know the lengths of
va and vb, you’re given cos θ for free. If you know the plane on which va and vb lie,
one vector and the angle to the other, you get the other one for cheap, and so on. In
typical use, if we were to take two vectors that each have length 1 (normalized vectors,
in Mathspeak), the dot product ab would basically a cosine of the angle between them.
That relationship, described by cos θ, is easy to think of as a projection: Imagine shining
a light from the top of one axis, and observing the shadow on another axis. How long
it is, and which direction it’s going, is exactly consistent with the dot product (in fact,
most lighting models use dot products for just about everything).

15.4.1.1.7 Example: Finding out if a point is above or below a plane This is a problem
we’ll often run into in 3D graphics: given a point p and a plane, we need to figure out
which side of the plane the point is on. This may be really useful if you’re trying to
decide what not to render in a scene, in order to save processing time.

There are many equivalent ways to describe a plane. The most elegant one in this
case is by using the plane’s normal (the direction perpendicular to both axis of the
plane) which is a vector we’ll mark as n, and the distance from the origin, d (note that
because the plane can pass below the origin, this distance can be negative). This is a
valid definition: a plane can be defined as all of the points in the world that form a
perpendicular vector to the normal.

Now the math:

If the point p is on the plane. We know that every line on the plane is perpendicular to
(has a 90-degree angle with) the normal. Specifically, every line connecting some point
on a plane to the point where we put our normal (which is the same on the plane) so
if we extract the direction vector from the line and call it v, we can say:

nv = ∥n∥ ∥v∥ cos 90◦ = ∥n∥ ∥v∥ 0 = 0

.

If the point p isn’t on a plane. In that case we know that it definitely doesn’t have a
90-degree angle with the plane’s normal n, therefore the dot product n • v won’t be
zero. So all we need to know is: does it project on the normal’s positive direction, or
it’s negative direction? In order to do that, we first find a point on the plane. That’s
easy, we defined our plane such that we can follow the normal n from the origin (0, 0, 0)
for a length d and we’ll get there.

283

15 That Math Chapter: From 1D to 4D

Therefore the point q = dn is most definitely on the plane.
Now, let’s make up a vector from the point p to that point: v = q−p. This equation holds
because when subtracting two points, we get the difference between them, hence the
direction from p to q. Now we calculate:

vn = vxnx + vyny + vznz

• If the dot product is positive, the normal and the line to a point on the plane
are both pointing in the same direction, that means that the point p is below the
plane.

• If the dot product is negative, the line from the point to the plane has to go back,
therefore the point is above the plane.

Here’s the code:� �
//we define a margin for numerical error
float const EPSILON = 0.00001;

// a function that returns -1 if a point is below a plane,
// 1 if it's above a plane and 0 if it's on a plane
int whichSide(ofVec3f planeNormal, float planeDistance, ofVec3f

testPoint){
ofVec3f directionToPlane = planeDistance * planeNormal -

testPoint;
float dot = directionToPlane.dot(planeNormal);
if (abs(dot) < EPSILON){ //Check if the dot product is very near

zero
return 0;

} else { // else return the opposite of its sign!
return (dot < 0 ? 1 : -1);
}

}� �
Note that in the code we had to take care of numerical inaccuracy of the computer, and
give it a margin for deciding that a vector is sometimes perpendicular to that normal.
An alternative would be to ignore those cases, and chose that anything with dot > 0
is below the plane. I like it better this way.
As you can see from the example, the dot product is magical: just from knowing the
coordinates, we get an insight about the angle between vectors for free.

15.4.2 The Matrix™

In the computer world, a program needs the two things to function: Algorithms and
Data Structures (it also needs I/O, but we’re talking about computation, not engineer-
ing). In the 3D Maths world it’s exactly the same: we call our data structures ‘vectors’
and our algorithms are operations.

284

15.4 More Dimensions: Some Linear Algebra

At the core of the heavy machinery built to control 3d space, a matrix is just a data
structure, like a vector. However, the ‘algorithms’ applied to this data structure (opera-
tions, in Mathland) make it an extremely powerful one. All of the affine operations we
care about in 3D can be described in the form of a matrix: translation, rotation, scaling,
inversion, squeezing, shearing, projection and more and more. Here’s a simple way to
remember this:

A Matrix is a mathematical object that stores a geometric transformation of
points.

Notation Convention: When dealing with matrices, most authors usually mark vectors
with lowercase letters and matrices with uppercase letters.

15.4.2.1 Matrix Multiplication as a dot product

The easiest way to look at a matrix is to look at it as a bunch of vectors. Depending on
what we care about, we can either look at the columns or rows as vectors.

//TODO: Draw 2x2 example

15.4.2.1.1 Identity Let’s start from the simplest case. Just like with numbers, it is a
very important property of any algebraic structure to have a neutral member for each
operation. For example, in Numberland, multiplication of any x by 1 returns x, same
goes for addition to 0. In Matrixland, that identity element is a matrix with 1s along the
diagonal zeroes elsewhere. For example, the identity matrix for 3 dimensions is:

I3 =

 1 0 0
0 1 0
0 0 1

So for any matrix M ,

MI = IM = M

.

Note: You may have noticed that we’re very careful right now with the order of mul-
tiplications, like when we took extra care to describe that MI = IM . There’s a good
reason for that, and you’ll discover it in a few pages.

15.4.2.1.2 Scale You might remember that when scaling a vector (i.e point in space
and/or velocity and/or force and/or brightness value for a colour, etc), we may choose
to scale it uniformly by scalar multiplication:

285

15 That Math Chapter: From 1D to 4D

� �
ofVec3f v(1, 2, 3);
cout << ofToSting(v * 5) << endl; //prints (5, 10, 15)� �
or, because of a weird language design choice, most graphics applications will allow
you to scale non-uniformly on a per-component basis:� �
ofVec3f v1(1, 2, 3);
ofVec3f v2(10, 100, 1000);
cout << ofToString(v1 * v2) << endl //prints (10, 200, 3000)� �
To put an end to this insanity, scaling in matrix multiplication is well-defined [footnote:
“well-defined” is not just a compliment, it’s a Mathematical term that essentially means
that if you follow the rules, the computation will never crash, so to speak – it will
never produce results outside the form you defined. For example, dividing by zero is
undefined, therefore division is not well defined on a domain of real numbers that
contains zero. Somebody closed that loop and defined division by zero to be exactly
∞, so for any range that contains infinity, division is well defined. You’ll find the same
issue in programming languages: some operations produce incompatible results. Many
criticize C++ for allowing that to happen too often, but other languages (such as Haskell,
Erlang and OCaml) are more strict about only using well-defined operations, so the
compiler is able to catch your errors, not the end user.] in openFrameworks (also in
math!). It goes like this: The matrix S that scales (x, y, z)T to (ax, by, cz)T is:

S ·

 x
y
z

 =

 a 0 0
0 b 0
0 0 c

 ·

 x
y
z

 =

 ax
by
cz

There’s logic behind this. Recall that a vector multiplied by a matrix, M · v is just a
collection of dot products:

M · v =

 M1
M2
M3

 · v =

 M1 · v
M2 · v
M3 · v

So, in order to get amultiplication through that only affects x, we tune the vector (upper
row of the matrix) M1 to be zero anywhere but the interface with x:

M1 = (a, 0, 0)

so the entire calculation would be:

M ·v =

 M1
M2
M3

 ·v =

 a 0 0
M2,1 M2,2 M2,3
M3,1 M3,2 M3,3

 ·v =

 a · vx + 0 · vy + 0 · vz

M2,1 · vx + M2,2 · vy + M2,3 · vz

M3,1 · vx + M3,2 · vy + M3,3 · vz

286

15.4 More Dimensions: Some Linear Algebra

Making the x component of the resulting vector be a · vx, just as promised.

Scalar multiplication of any matrix M becomes really easy, then: it’s essentially right
multiplication by a diagonal matrix full of a’s:

a · M = a · I · M

15.4.2.1.3 Skew matrices [mh: this could use an image]

Odd operations like skewing are where things need to get a little less intuitive andmore
logical. When we think of skewing we normally imagine adding to a certain dimension,
suppose x, a proportion of a quantity from another dimension, let’s say y. Suppose
that proportion is some 0 < a ≤ 1, as if to say, ‘I want to nudge it a little, the more it
leaves the ground’. The matrix for doing that in 2 dimensions would look like this:

S =
[

1 a
0 1

]

See what we did there? We made the resulting x value depend on the input x value
(being multiplied by 1), but also slightly depend on the input y, exactly how slightly
being determined by the magnitude of a:

S · v =
[

1 a
0 1

] [
x
y

]
=
[

1 · x + a · y
0 · x + 1 · y

]
=
[

x + ay
y

]

Pretty neat, right? Try to remember this trick, as we’re going to use it quite a lot when
we move stuff around in the fourth dimension. I’m not even joking.

15.4.2.1.4 Rotation matrices We now see that any operation in Matrixland can really
be expressed in a collection of vectors. We also know that dot products of vectors
express the angle between two vectors times their magnitude. A slightly surprising fact
is that those two properties are enough to describe any rotation.

In order to comprehend this last statement, let’s first explain how rotating one vector
works. Let’s take the vector

v0 =
[

1
0

]
I picked a vector that coincides entirely with the x axis. Now, suppose that we would
like to rotate the vector by an angle θ, starting from the origin. Using our knowledge
about the unit circle⁷, we can describe the rotated vector as

vθ =
[

cos θ
sin θ

]
⁷http://en.wikipedia.org/wiki/Unit_circle

287

http://en.wikipedia.org/wiki/Unit_circle

15 That Math Chapter: From 1D to 4D

Now we found a target for the x axis to go to. Using the same rotation, let’s try to find

where the old y axis (the vector u0 =
[

0
1

]
), we only need to know the angle between

them. Luckily, we all know that it’s 90 degrees, or in radians: π
2 . The new home will

then have to be at angle θ + π
2 from the x axis (angle 0):

uθ =
[

cos
(
θ + π

2
)

sin
(
θ + π

2
)] =

[
− sin θ
cos θ

]

That last equality is due to trigonometric equalities.

15.4.2.1.4.1 2D RotationMatrices We now have all of the information we need to build
a matrix that moves the vectors

{[
1
0

]
,

[
0
1

]}
to
{[

cos θ
sin θ

]
,

[
− sin θ
cos θ

]}
:

R (θ) =
[
cos θ − sin θ
sin θ cos θ

]

Now, hold on. Check out what we did here: we placed the targets for the source vectors
as columns in the matrix, and then we took the resulting rows of the matrix to do the
rotation. Why did we do that?

Recall that a matrix is just a stack of dot products. How did we construct these dot
products? We just aligned all of the entries that should be affecting the resulting entry
in one row of the matrix. That means that when considering the resulting y entry, our
vectors defined the mixture of y components from the target vectors that we would like
to see in the resulting operation. This makes sense: Think of the vectors that compose
the matrix as a new coordinate system, and what we’re calculating is how the ‘natural’
coordinate system is projected onto them.

15.4.2.1.5 3D RotationMatrices In Flatland, Edwin A. Abbott describes a land in which
two-dimensional beings live obliviously and happily, until one of them encounters a
three-dimensional thing. His mind is boggled – he quickly understands the implica-
tions; When he tries to explain it to the other squares living in his world, they are
apalled and he is cast away as a heretic.

Rotation in three dimensions is more complex to understand than rotations in two
dimensions. There are much more cases, and in order to understand nontrivial rota-
tions, one has to actually look at things in four dimensions. This seems to anger many
people who don’t normally think in 4 dimensions. After all we’ve been through, please
stick around for this one too.

288

15.4 More Dimensions: Some Linear Algebra

15.4.2.1.5.1 Euler Angles The easiest way to think about rotations in 3D is to just think
about them as a series of 2D-rotations. Let’s called that nesting a dimension.

The trick for rotating about one axis in 3D-land works the exact same way it does in
2d land: In order to rotate around one axis, all we need to do is to use a 2d rotation
matrix (think about it: a rotation about one axis doesn’t depend on the others just yet),
and add a neutral dimension to it. Here’s what rotation matrices in 3d look like when
we use one axis of rotation each time:

Rx(θ) =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

Ry(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

Rz(θ) =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

And this is indeed a useful way for rotating about one axis. Leonhard Euler, a famous
Mathematician working on these types of rotations, noted early on that while good for
rotating about one axis, this method (later named after him) was not trivial to state for
multiaxial rotations. To understand that, it’s easiest to grab a Rubik’s cube and twist
it about its x dimension, and then about it’s y dimension. Now make a note of where
the unique tiles have moved, revert the changes, and try it again with first y and then
x. Your results will be different!

Noting that, we know that when rotating things in more than 2 dimensions, we need to
know not only the angles of the rotations, but the order in which to apply them. The
rotation matrices Rzx (θ) = Rz (θ) Rx (θ) and Rxz (θ) = Rx (θ) Rz (θ) are not the same.
The reason for the difference will be explained in the next section.

15.4.2.1.5.2 Other Methods of Rotation: Axis-Angles and Quaternions We can only
end this one-page section with a defeating note: rotations in 3D are a big subject.
Even though one matrix can only mean one thing, there are multiple ways of getting to
it. Euler Angles demonstrated above are one common and easy-to-comprehend way;
A slightly more general way is given by defining an arbitrary axis and rotating around
it, called Axis-Angle Rotation.

//TODO: Draw difference between angle-axis and normal-axis euler rotations

Constructing the matrix for that kind of rotation is slightly hairy, which is why pro-
grammers often prefer not to use matrices for describing those rotations, but more
compact Algebraic objects called Quaternions. Those exist in openFrameworks under

289

15 That Math Chapter: From 1D to 4D

ofQuaternion, and can mostly be used without actually investigating the underlying
math.

As far as usage goes, it’s important to note that Quaternions are sometimes more
efficient (and actually easier to think with) than Matrices, but their Mathematical un-
derpinnings are far beyond the scope of a basic math chapter.

15.4.2.2 Matrix Algebra

This chapter introduced a different kind of math from what you were used to. But while
introducing a new thing to do things with we opened up a lot of unexplored dangers.
Notice that we always multiplied vectors by matrices in a certain order: It’s always the
vector after the matrix, the vector is always transposed, and any new operation applied
to an existing situation always happens with a matrix to the left of our result. There’s
a reason for all of that: Commutativity.

15.4.2.2.1 Commmumamitativiwha? In high school Algebra, we used to think that a ·
b = b · a. No reason not to think that: The amount of uranium rods that you have
times the amount of specially trained monkeys that I have equals the same amount
of casualties, no matter the order of multiplication. That’s because quantities are
commutative, the order in which they apply operations to each other doesn’t matter.

But, in matrixland we’re not talking about things we counted - instead, we’re talking
about operations, and here’s the deal:

Operations (like Rotation, Translation and Scaling) are generally not com-
mutative.

There’s a difference between scaling a square by x and then rotating it by 90 degrees
and doing it the other way around:

//TODO: Draw this

What’s more, doing it the other way around is not always defined. Matrices and vec-
tors with unequal sizes have very special conditions in which they could be multiplied.
We’re not dealing with them now, so I’ll let you read about it in Wikipedia, but it’s
important to know that whenever using matrices for manipulating a space, order of
operands is really important.

15.4.2.2.2 What else isweird? Nothing. We can still multiply thematrices and vectors
in any order that we want to:

M1M2v = (M1M2) v = M1 (M2v)

290

15.4 More Dimensions: Some Linear Algebra

as long as we don’t change the order in which they appear. That property is called As-
sociativity, and it’s one of the defining properties of algebraic structures that describe
geometric operations, structures which mathematicians call Groups. Commutativity is
an optional property for groups, it just happens to be a given when dealing with opera-
tions between numbers, which is why you’ve never been told that you need it. There’s
a lesson here: simulations take a lot of properties for granted. It’s sometimes good to
ask why.

Now grab a pack of ice, place it on your head for 15 minutes and go on reading the next
part.

15.4.3 “The Full Stack”

Now that we know how to construct its major components, let’s have a look at all the
math that constructs graphics in openFrameworks before sending it to the screen. For
that, we’ll have to – once again – increase our number of D’s.

15.4.3.1 Translation matrices

If you recall the comment in the beginning of this chapter, mathematicians are very
careful when calling things linear. In 2D, a linear operation can basically do 2 things:
Rotation and Scaling (including negative scaling - “mirroring”). The reason for this is
that these are all operations that can be done in n dimensions to any n-dimensional
shape (replace n with 3 for our example).

If the entire shape lifts itself magically and moves away from the origin - it can’t be
done with a matrix, therefore it’s not linear. This presents a problem to people who
want to use matrices as an algebraic system for controlling 3d: in real life we need to
move some stuff around.

15.4.3.1.1 Homogenous coordinates: Hacking 3d in 4d This problem has caused hun-
dreds of years of agony to the openFrameworks community, until in 1827 a hacker called
Möbius pushed an update to the ofMäth SVN repo: use the matrix in 4 dimensions to
control a 3 dimensional shape. Here’s the shtick: a 3d operation can be described as a
4d operation which doesn’t do anything to the 4th dimension. Written as a matrix, we
can describe it like this:

A4×4 =

a1,1 a1,2 a1,3 0
a2,1 a2,2 a2,3 0
a3,1 a3,2 a3,3 0
0 0 0 1

291

15 That Math Chapter: From 1D to 4D

Nowwe already know that a 1D Skew canmove all lines in that axis in a certain direction
without affecting the other dimensions, and that a 2D skew will do that for all things
on a certain plane, so it’s easy to imagine that a 3D skew will do that to 3D spaces
embedded in a space with more dimension. Möbius figured that feature is useful, and
he proposed on the bianual openFrämeworks meeting in Tübingen that all operations
will be conducted in 4D space, and then projected back into 3D space, like this:

T =

1 0 0 tx

0 1 0 ty

0 0 1 tz

0 0 0 1

The 3D Transform vector t is placed in the 4th dimension, with it’s 4th entry as 1 (be-
cause 1 is neutral to multiplication). The bottom row that is added has zeroes in the
x, y, z entries, in order to avoid interfering with other operations. Check out what hap-
pens when a vector is multiplied by this matrix:

T · v =

1 0 0 tx

0 1 0 ty

0 0 1 tz

0 0 0 1

 ·

x
y
z

1

 =

x + tx

y + ty

z + tz

1

Now all we need to do is discard the 4th dimension to get our translated point. Quite
cool, innit?

Notice that because we placed a 1 at the w (4th) dimension, all of the multiplication
operations went through that component transparently. This trick became the stan-
dard of most computer geometry systems. Möbius actually has a lot more going in this
theory: if we change that 1 into something else, we’re able to simulate a projection into
a camera pinhole. This chapter won’t cover that fascinating part of math, but when you
get to building cameras in OpenGL, keep this amazing hack in mind.

15.4.3.2 SRT (Scale-Rotate-Translate) operations

Now we’ve defined the operations we like the most to describe (sort-of) real world
objects moved around in space. Let’s spend a few paragraphs talking about how to
combine all of the operations together.

If you recall, geometric operations are non-commutative, which means that if we de-
fined them in a specific order, there’s no guarantee that changing the order will pro-
vide us with similar results. That means that when building a graphics system we need
to exercise systematic vigilance when executing human stuff like “Turn that spindle
around so I may see its refractions of the sun” without accidentally turning the sun
around its’ axis, incinerating the good people of Uranus. [mh: this felt distracting]

292

15.4 More Dimensions: Some Linear Algebra

The way we execute that vigilance is by a predefined order for handling objects. If you
grab a pen and paper it won’t take too long to figure that order out: 1. Modify the scale
(if need be). 2. Modify the orientation (if need be). 3. Modify the position (if need be).
4. Rejoice.

Any other order will cause weird effects, like things growing and spinning off their axes
(anchor point / pivot, if animation is your jam). This may seem like common sense, but
Ken Perlin notes that it was only the late 80s when that system became a standard for
3d.

This set of operations is called SRT, or Scale-Rotate-Translate, because it can be de-
scribed by the following sequence of matrices:

TRSv

Where the first operation occuring is the one most adjacent to the vector v.

If you recall, we can multiply all of these matrices to get one matrix representing all
the entire operation:

M = TRS

We call this matrix M , because it places objects we give it in their place in the Model.
Whenever you call ofTranslate(), ofRotate(), ofScale() (or equivalent) on an ob-
ject, that operation is applied to the currently activeModelmatrix. Whenever you exe-
cute ofPushMatrix(), a copy of that matrix is saved in thematrix stack, so that you can
go back to it when necessary. And when necessary, you will then use ofPopMatrix(),
which will cause the current matrix M to be deleted and replace it with a matrix from
the top of the matrix stack. That is the entire mystery about matrices. That’s it.

15.4.3.3 Using Matrices and Quaternions in openFrameworks

While this chapter was supposed to show the underlying representation of grpahics
operations, it did intentionally avoid showing matrix examples in code. Now that you
know how matrices look on the inside, it’ll be a lot easier for you to figure out how to
debug your 3d code, but most of the time usingmatrices in raw formwon’t be necessary.

While you could construct a matrix via ofMatrix4x4, using:� �
ofMatrix4x4(const ofQuaternion& quat) {

makeRotationMatrix(quat);
}

ofMatrix4x4(float a00, float a01, float a02, float a03,
float a10, float a11, float a12, float a13,
float a20, float a21, float a22, float a23,
float a30, float a31, float a32, float a33);� �

293

15 That Math Chapter: From 1D to 4D

You’ll mostly find that what matters to you is the Algebra of the Operation, not the
actual numbers, so you’ll be much better off using these:� �
void ofMatrix4x4::makeScaleMatrix(const ofVec3f&);
void ofMatrix4x4::makeScaleMatrix(float, float, float);

void ofMatrix4x4::makeTranslationMatrix(const ofVec3f&);
void ofMatrix4x4::makeTranslationMatrix(float, float, float);

void ofMatrix4x4::makeRotationMatrix(const ofVec3f& from, const
ofVec3f& to);

void ofMatrix4x4::makeRotationMatrix(float angle, const ofVec3f&
axis);

void ofMatrix4x4::makeRotationMatrix(float angle, float x, float y,
float z);

void ofMatrix4x4::makeRotationMatrix(const ofQuaternion&);
void ofMatrix4x4::makeRotationMatrix(float angle1, const ofVec3f&

axis1,
float angle2, const ofVec3f& axis2,
float angle3, const ofVec3f& axis3);� �

All these things do is form Operations you can later multiply your ofVec4f objects
with.

Here’s the same example for Quaternions, using the ofQuaternion class:� �
/* Axis-Angle Rotations*/
void ofQuaternion::makeRotate(float angle, float x, float y, float

z);
void ofQuaternion::makeRotate(float angle, const ofVec3f& vec);
void ofQuaternion::makeRotate(float angle1, const ofVec3f& axis1,

float angle2, const ofVec3f& axis2, float angle3, const ofVec3f&
axis3);

/* From-To Rotations */
void ofQuaternion::makeRotate(const ofVec3f& vec1, const ofVec3f&

vec2);� �
Just like with Matrices, any of these objects create a rotation operation that can later
be applied to a vector:� �
ofVec3f myUnrotatedVector(1,0,0);
ofQuaternion quat;
quat.makeRotate(ofVec3f(1,0,0), ofVec3f(0,1,0));
ofVec3f myRotatedVector = quat * myUnrotatedVector;
cout << ofToString(myRotatedVector) << endl;
//prints out (0,1,0)� �

294

15.4 More Dimensions: Some Linear Algebra

15.4.3.3.0.1 Ok, Now What? This chapter is just the tip of the iceberg in what math
can do for graphics.

In the ‘Advanced Graphics’ chapter you’ll learn about two similar matrices: * The View
matrix tramsforms the result of the Model matrix to simulate where our camera is
supposed to be at. * The Projectionmatrix applies the optical properties of the camera
we defined and turns the result of the View matrix from a 3D space to a 2D image. The
Projection matrix is built slightly different than the Model-View matrix, but if you’ve
made it this far, you won’t have trouble reading about it in a special Graphics topic.

15.4.3.3.0.2 Also, Thanks Learning Math is hard. Teaching Math is therefore excruci-
ating: having so many ideas you want to put in someone else’s head, and the slow and
sticky nature of it all. I’d like to thank Prof. Bo’az Klartag and Prof. Ken Perlin and for
giving me ideas on how to teach mathematics intuitively.

295

16 Memory in C++

by Arturo Castro¹

Correctly using memory is one of the trickiest parts of working with c++. The main
difference with other languages like Java, Python and in general any languages that
are “garbage collected” is that in c++ we can explicitly reserve and free memory while
in those an element called garbage collector does the work for us.

There’s also an important difference, in c++ we have two different memory areas, the
heap and the stack, if you are used to work with processing, Java or Python among
others you’ll be used to only have heap memory.

We’ll see later what the main differences are, but first let’s see what’s memory and
what happens when we create variables in our program.

16.1 Computer memory and variables

It’s helpful to understand at least at a high level how computer memory works.

A computer has different types of memory, in this section we are going to be talking
about RAM (RandomAccessMemory)memory. The kind ofmemory where the computer
stores the instructions for the programs that are executing at every moment and the
data those programs are using.

Your computer probably has something like 4Gb of RAM, in c++ we can access most
of that memory, and to access it what we do is create variables. Memory is divided in
bytes, which are the minimummemory size that we can usually use in a c++ application.
Each data type like char, int, float… has a different size all measured in bytes. Those
sizes can be different for different platforms but the most usual is something like:

• char: 1 byte
• short: 2 bytes
• int: 4 bytes
• float 4 bytes
• double 8 bytes

¹http://arturocastro.net

297

http://arturocastro.net

16 Memory in C++

Other types might have variable sizes depending on their contents like for example an
array or a string.
For example when we create a variable like:� �
int i;� �
what we are doing is reserving 4 bytes of those 4Gb to store an int, it doesn’t really
matter if we are storing ints or other types of data, the sizes will be different for and
int a char, a float or a string but the type of memory is always the same.
Internally the computer doens’t really now about that memory area as i but as a mem-
ory address. A memory address is just a number that points to a specific byte in the
4Gb of memory.
When we create a variable like int i we are telling our program to reserve 4 bytes of
memory, associate the address of the first byte of those 4 to the variable name i and
restrict the type of data that we are going to store in those 4 bytes to only ints.
Usually memory addresses are represented in hexadecimal². In c++ you can get the
memory address of a variable by using the & operator, like:� �
cout << &i << endl;� �
The output of that cout is the memory address of the first byte of the variable i we just
created.
Later on, when we asign a value to that variable, what it’s happening is that we are
storing that value in the memory area that we’ve just reserved by declaring the variable,
so when we do:� �
i = 0;� �
Our memory will look like:
The order in which the bytes that form the int are layed out in the memory depends
on the architecture of our computer, you’ll prpbably seen little endian and big endian³
mentioned sometime. Those terms refer to how the bytes of a data type are ordered
in memory, if the most significative bytes come first or last. Most of the time we don’t
really need to know about this order but most modern computer architectures use
little endian.
If you’ve used c++ for a while you’ve probably had crashes in your programs be-
cause of bad memory accesses. Usually the message you’ll see is something like
segmentation fault.... What does that mean?
When you create variables in a program, even in c++, you can’t really access all the
memory in the computer, for security reasons. Imagine you had your bank account
²http://en.wikipedia.org/wiki/Hexadecimal
³http://en.wikipedia.org/wiki/Endianness

298

http://en.wikipedia.org/wiki/Hexadecimal
http://en.wikipedia.org/wiki/Endianness

16.2 Stack variables, variables in functions vs variables in objects

opened in your browser, if any program could access all the memory in the computer
a malign application could just access the memory of the browser and get that infor-
mation or even modify it. To avoid it the operating system asigns chuncks of memory
to every program. When your application starts it’s asigned a segment of memory, later
on as you create variables if there’s enough memory in that segment your variables
will be created there. When there’s not more memory available in that segment the
operating system asigns the application a new one and the application starts using
that. If you try to access a memory address that doesn’t belong to a segment asigned
to your application, the operating system just kills the application to avoid possible
security risks.

How does that happen usually? Well most of the time you just don’t try to access
memory addresses by their number, so how’s it possible that sometimes you try to
access a variable and you get a segmentation fault. Most of the time this happens
because you try to access a varible that doesn’t exist anymore, usually because you
stored a pointer to a memory area and then free or move that memory somewhere
else. We’ll talk in more detail about this later

16.2 Stack variables, variables in functions vs variables in
objects

As we said at the beginning of the chapter there’s two types of memory in c++ the stack
and the heap. Let’s talk first about the stack since that’s the easiest type of memory
to use and what you’ll use more frequently in openFrameworks.

The stack is the type of memory that you use when creating variables inside a function
or in the .h of your class as long as you don’t use pointers and the keyword new.

It’s called stack because it’s organized like a stack⁴. When in our application we call a
function, there’s an area inmemory asigned to that function call. That specific function
call, and only it, during the time it lasts can create variables in that area.

Those variables stop existing when the function call ends. So for example you can’t
do:� �
void ofApp::setup(){

int a = 0;
}

void ofApp::update(){
a = 5; // error a doesn't exist outside setup

}� �
⁴http://en.wikipedia.org/wiki/Stack_%28abstract_data_type%29

299

http://en.wikipedia.org/wiki/Stack_%28abstract_data_type%29

16 Memory in C++

Also since we are talking about function calls you can’t store a value in an stack variable
and expect it to be there when the function is called again.

In general we can say that variables exist in the block they’ve been defined, a block in
c++ is defined by the {} inside which a variable was defined, so for example, doing this
won’t be valid either:� �
for (int i=0;i<10;i++){

int a = 5;
}
cout << a << endl; // error a doesn't exist outside the {} of the for� �
We can even do this:� �
void ofApp::setup(){

{
int a = 0;
// do something with a

}

{
int a = 0;
// do something with a

}
}� �
which is not very common but is used sometimes to define the life of a variable inside
a function, mostly when that variable is an object that holds resources and we want to
only hold them for a specific duration.

The life of a variable is called scope.

Apart from creating variables inside functions we can also create variables in the class
declaration in our .h like:� �
class Ball{
public:

void setup();

float pos_x;
}� �
These kind of variables are called instance variables because every instance or
object of our class will get a copy of it. The way they behave is more or less the same
as the stack variables created in functions. They exist for the duration of the {} in which
they were defined, in this case the {} of the object to which they belong.

These variables can be accessed from anywhere in the class so when we need to have
data that is accessible from any function in an object of this class we create it like this.

300

16.3 Pointers and references

The memory in the stack is limited, the exact size, depends on the architecture of our
computer, the operating system and even the compiler we are using. In some systems
it can even be changed during the runtime of the application, but most of the time we
won’t reach that limit.

Even if we create all of our variables in the stack, usually the objects that consume
most memory like for example a vector or in openFrameworks something like ofPixels,
will create most of the memory they use internally in the heap which is only limited by
the amount of memory available in the computer so we don’t need to worry about it.

We’ll see in the next sections how the heap works and what are the advantages of using
the heap or the stack.

16.3 Pointers and references

Before talking about heap memory let’s see how pointers and references work in c++,
what’s their syntax and what’s really happening with memory when we create a pointer
or a reference.

As we’ve seen before we can get the address of a variable by doing:� �
cout << &i << endl;� �
And that will give us the memory address of the first byte used by that variable no
matter it’s type. When we store that memory address in another variable that’s what
we call in c++ a pointer. The syntax is:� �
int i = 0;
int * p = &i;� �
And what we get in memory is something like:

A pointer usually occupies 4/8 bytes (depending if we are on a 32 or 64bits application),
we are representing it as 1 byte only to make things easier to understand, but as you
can see it’s just another variable, that instead of containing a value contains a memory
address that points to a value. That’s why it’s called pointer.

A pointer can point to heap or stack memory.

Now, let’s explain something that it’s really important to take into account when pro-
gramming in c++. As we’ve seen till now, when we declare a variable like:� �
int i;� �
We get a memory layout like:

As we see there’s no value in that memory area yet. In other languages like processing
doing something like:

301

16 Memory in C++

� �
int i;
println(i)� �
is illegal, the compiler will tell us that we are trying to use a variable that is not initial-
ized. In c++ though, that’s perfectly legal but the contents of that variable are unde-
fined. Most of the times we’ll get 0 because the operating system will clear the memory
before assigning it to our program, again, for security reasons. But if we are resuing
memory that we had already assigned, then, that memory area will contain anything,
and the results of our program will be undefined.

If for example we have a variable that defines the position of something we are going
to draw, failing to initialize it will lead to that object being drawn anywhere.

Most objects have default constructors that will initialize their value to, for example 0,
so in the case of objects it’s usually not necessary to give them a value.

What happens when we use an uninitialized pointer? Well, since a pointer contains a
memory address, if the value we get in that memory area points to an address that
doesn’t belong to our program and we try to retrieve or modify the value stored in that
address the OS will kill our application with a segmentation fault signal.

Back to pointers, we’ve seen that, we can create a pointer like:� �
int i = 5;
int * p = &i;� �
now, if we try to use the pointer directly like;� �
cout << p <<< endl;� �
what we’ll get is a memory address not the value 5. So how do we access the value
pointed by a pointer, well we can use the opposite operator to &: as & gives us the
address of a variable, * gives us the value pointed by a memory address, so we can do:� �
cout << *p << endl;� �
and we’ll get the value 5 printed now. We can also do:� �
int j = *p;
cout << j << endl;� �
and again will get the value 5 since we made a copy of the value pointed by p in j.

The &operator is called the reference operator since it gives us a reference to a variable,
it’s memory address. The * operator is it’s opposite, the dereference operator and it
gives us the value pointed by a pointer, it dereferences a reference, a memory address,
so we can access it’s value instead of the address.

302

16.3 Pointers and references

Till now, we’ve work with primitive values, ints really, but the behaviour will be the
same for any other primitive value, like float, short, char, unsigned int… In c++ in fact,
the behaviour is also the same for objects.

If you are used to Java, for example you’ve probably noticed that while in Java and C++
this:� �
int a = 5;
int b = a;
a = 7;
cout << "a:␣" << a << "␣b:␣" << b << endl;� �
will behave the same (of course changing cout for the equivalent in java). That is: a will
end up being 7 and b will be 5. When we use objects the behaviour in c++ is different
to that of Java. For example, let’s say we have a class Ball:� �
class Ball{
public:

void setup();
//...

ofVec2f pos;
}� �
or the similar class in processing;� �
class Ball{

void setup();

PVector pos;
}� �
if in c++ you do:� �
Ball b1;
b1.pos.set(20,20);
Ball b2;
b2 = b1;
b2.pos.set(30,30);� �
b1 pos will end up being 20,20 and b2 30,30 while if you do the equivalent in java both
b1 and b2 will have position 30,30:� �
Ball b1 = new Ball();
b1.pos.set(20,20);
Ball b2;
b2 = b1;
b2.pos.set(30,30);� �

303

16 Memory in C++

Notice how in the case of Java we have made new for the first ball but not for the
second, that’s because in Java everything that is an object is a pointer in the heap so
when we do b2 = b1we are actually turning b2 into a reference to b1, and when we
later change b2, we are also changing b1.

In c++, instead when we do b2 = b1 we are actually copying the values of the variables
of b1 into b2 so we still have 2 different variables instead of a reference. When we
modify b2, b1 stays the same.

In both languages the =means copy the value of the right side into the variable on the
left side of the =. The difference is that in Java an object is really a pointer to an object
the contents of b1 or b2 are not the object itself but it’s memory address, while in c++
b1 actually contains the object itself.

This is more or less what memory would look like in Java and C++:

As you can see in c++ objects in memory are just all their member variables one after
another. When we make an object variable equal to another, by default, c++ copies all
the object to the left side of the equal operator.

Now what would happen if we have a class like:� �
class Particle{
public:

void setup();
//...

ofVec2f pos;
ParticleSystem * parent;

}� �
And we do:� �
Particle p1;
Particle p2;
ParticleSystem ps;

p1.pos.set(20,20);
p1.parent = &ps;
p2 = p1;� �
Well as before c++ will copy the contents of p1 on p2, the contents of p1 are an ofVec2f
which consits of 2 floats x and y and then a pointer to a ParticleSystem, and that’w what
gets copied, the ParticleSystem itself won’t get copied only the pointer to it, so p2 will
end up having a copy of the position of p2 and a pointer to the same ParticleSystem
but we’ll have only 1 particle system.

The fact that things are copied by default and that objects can be stored in the stack
as oposed to being always a pointer has certain adavantages. For example, in c++ a

304

16.3 Pointers and references

vector or an array of particles like the ones we’ve used in the last example will look
like:� �
vector<Particle> particles;� �
in memory all the particles will be contiguous, among other things, that makes access-
ing them faster than if we had pointers to a different location in memory. It also makes
it easier to translate c++ vectors to openGL memory structures but that’s the topic for
another chapter.

Among other things we need to be aware of the fact that c++ copies things by default,
when passing objects to functions as parameters. For example this:� �
void moveParticle(Particle p){

p.x += 10;
p.y += 10;

}

...

Particle p1;
moveParticle(p1);� �
Is perfectly valid code, but won’t have any effect since the function will receive a copy
of the particle and modify that copy instead of the original.

We can do this:� �
Particle moveParticle(Particle p){

p.x += 10;
p.y += 10;
return p;

}
...

Particle p1;
p1 = moveParticle(p1);� �
So we pass a copy of our particle to the function which modifies it’s values and returns
a modified copy which we then copy into p1 again. See how many times we’ve men-
tiponed copy in the previous sentence? The compiler will optimize some of those out
and for small objects it’s perfectly ok to do that but imagine we had something like
this:� �
vector<Particle> moveParticles(vector<Particle> ps){

for(int i=0;i<ps.size();i++){
ps[i].x += 10;
ps[i].y += 10;

}

305

16 Memory in C++

return ps;
}
...

vector<Particle> ps;
...
ps = moveParticles(ps);� �
If we have 1 million particles that will be awfully slow, memory is really slow compared
to the cpu, so anything that involves copying memory or allocating newmemory should
be usually avoided. So what can we do to avoid all that copies?

Well we could use pointers right?� �
void moveParticle(Particle * p){

p->x += 10;
p->y += 10;

}
...

Particle p1;
moveParticle(&p1);� �
Now, here’s something new, notice how to refer to the variables of a pointer to an
object instead of using the dot, we use the -> operator, everytime we want to access a
variable in a pointer to an object instead of having to dereference it like:� �
(*p).x +=10� �
we can use the ->� �
p->x += 10� �
So that solves our problem, using a pointer instead of passing a copy of the object, we
are passing a reference to it, it’s memory address, so the function will actually modify
the original.

The main problem with this is that the syntax is kind of weird, imagine how would look
like if we passed a pointer for the second example, the one with the vector:� �
vector<Particle> moveParticles(vector<Particle> ps){

for(int i=0;i<ps.size();i++){
ps[i].pos.x += 10;
ps[i].pos.y += 10;

}
return ps;

}
...

306

16.3 Pointers and references

vector<Particle> ps;
...
ps = moveParticles(ps);� �
Now, the function will look like:� �
void moveParticles(vector<Particle> * ps){� �
the problem is that now we can’t use the [] operator to access the elements in the
vector cause ps is not a vector anymore but a pointer to a vector. What’s more this� �
ps[i].x += 10;� �
would actually compile but would mostly sure give as a memory access error, a seg-
mentation fault. ps is now a pointer and when using pointers the `[]’ behaves like if we
had an array of vectors!
We’ll explain this in more depth in the section about memory structures, but let’s see
how to pass a reference that doens’t have pointer syntax. In c++ is called a reference
and it looks like:� �
void moveParticles(vector<Particle> & ps){

for(int i=0;i<ps.size();i++){
ps[i].pos.x += 10;
ps[i].pos.y += 10;

}
}

vector<Particle> ps;
...
moveParticles(ps);� �
Now we are passing a reference to the original object but instead of having to use
pointer syntax we can still use it as if it was a normal object.

Advanced note: Some times we want to use references to avoid copies but
still be sure that the function we pass our object to, won’t modify it’s con-
tents, in that case it’s recomendable to use const like:� �
ofVec2f averagePosition(const vector<Particle> & ps){

ofVec2f average;
for(int i=0;i<ps.size();i++){

average += ps[1].pos;
}
return average/float(ps.size());

}
vector<Particle> ps;
...
ofVec2f averagePos = averagePosition(ps);� �

307

16 Memory in C++

const only makes it imposible to modify the variable, even if it’s a reference,
and tells anyone using that function that they can pass their data into it and
it won’t be changed, also anyone modifying that function knows that in the
future it should stay the same and the input, the particle system shouldn’t
be modified.

Outside of parameters, references have a couple of special characteristics.

First we can’t modify the content of a reference once it’s created, for example we can
do:� �
ofVec2f & pos = p.pos;
pos.x = 5;� �
but trying to change the reference itself like in:� �
ofVec2f & pos = p.pos;
pos.x = 5;
pos = p2.pos // error, a reference can only be asigned on it's

declaration� �
Also you can return a reference but depending on what that reference it’s pointing to
it can be a bad idea:� �
ofVec2f & averagePosition(const vector<Particle> & ps){

ofVec2f average;
for(int i=0;i<ps.size();i++){

average += ps[1].pos;
}
average/=float(ps.size());
return average;

}� �
Will actually compile but will probably result in a segmentation fault at some point or
even just work but we’ll get weird values when calling this funciton. The problem is
that we are creating the variable average in the stack so when the function returns
it’ll be deleted from memory, the reference we return will be pointing to a memory
area that is not reserved anymore for average and as soon as it gets overwritten we’ll
get invalid values or a pointer to a memory area that doesn’t belong to our program
anymore.

This is one of the most annoying problems in c++ it’s called dangling pointers or in this
case references and it’s caused when we have a pointer or a reference that points to
a memory area that is later freed somehow.

More modern langauges solve this with diferent strategies, for example Java won’t let
this happen since objects are only deleted once the last reference to them goes out of
scope, it uses something called a garbage collector that from time to time goes through

308

16.4 Variables in the heap

the memory looking for objects which have no more references pointing to them, and
deletes them. This solves the problem but makes it hard to know when objects are
going to get really deleted. c++ in it’s latest versions, and more modern languages try
to solve this using new kinds of pointers that define ownership of the object, we’ll talk
about it in the latest section of this chpater, smart pointers.

16.4 Variables in the heap

Now that we now the syntax and semantics of pointers lets see how to use the heap.
The heap is an area of memory common to all of our application, any function can
create variables in this space and share it with others, to use it we need a new keyword
new:� �
Particle * p1 = new Particle;� �
If you know processing or Java that looks a little bit like it, right? indeed this is exactly
the same as a Java object: when we use new we are creating that variable in the heap
instead of the stack. new returns a pointer to a memory address in the heap and in
c++ we explictly need to specify that the variable p1 where we are going to store it, is
a pointer by using the * in the declaration.

To access the variables or functions of a pointer to an object, as we’ve seen before, we
use the -> operator so we would do:� �
Particle * p1 = new Particle;
p1->pos.set(20,20);� �
or:� �
Particle * p1 = new Particle;
p1->setup();� �
A pointer as any variable can be declared without initializing it yet:� �
Particle * p1;
p1->setup() // this will compile but fail when executing the

application� �
We can imagine the heap as some kind of global memory as opposed to the stack being
local memory. In the stack only the block that owned it could access it while things
created in the heap outlive the scope in which they were created and any function can
access them as long as they have a reference (a pointer) to them. For example:� �
Particle * createParticle(){

return new Particle;

309

16 Memory in C++

}

void modifyParticle(Particle * p){
p->x += 10;

}

...

Particle * p = createParticle();
modifyParticle(p);� �
createParticle is creating a new Particle in the heap, so even when createParticle
finishes that Particle still exists. We can use it outside the function, pass a reference
to it to other functions…

So how can we say that we don’t want to use that variable anymore? we use the
keyword delete:� �
Particle * p1 = new Particle;
p1->setup();
...
delete p1;� �
This is important when using the heap, if we fail to do this we’ll get with what is called
a memory leak, memory that is not referenced by anyone but continues to leave in the
heap, making our application use more and more memory over time till it fills all the
available memory in our computer:� �
void ofApp::draw(){

Particle * p1 = new Particle;
p1->setup();
p1->draw();

}� �
every time we call draw, it’ll create a new particle, once each draw call finishes we
loose the reference *p1 to it but the memory we allocated using new is not freed when
the function call ends so our program will slowly use more and more memory, you can
check it using the system monitor.

As we’ve mentioned before the stack memory is limited so sometimes we need to use
the heap, trying to create 1 million particles in the stack will probably cause a stack
overflow. In general, though, most of the time in c++ we don’t need to use the heap, at
least not directly, classes like vector, ofPixels and other memory structures allow us to
use heap memory but still have stack semantics, for example this:� �
void ofApp::draw(){

vector<Particle> particles;
for(int i=0; i<100; i++){

310

16.5 Memory structures, arrays and vectors

particles.push_back(Particle())
particles.back().setup();
particles.back().draw();

}
}� �
is actually using heap memory since the vector is internally using that, but the vector
destructor will take care of freeing that memory for us as soon as the particles variable
goes out of scope, when the current call to draw finishes.

16.5 Memory structures, arrays and vectors

Arrays are the most simple way in c++ to create collections of objects, as any other type
in c++ they can also be created in the stack or in the heap. Arrays in the stack have a
limitation though, they need to have a predifined size that needs to be specified in it’s
declaration and can’t change afterwards:� �
int arr[10];� �
the same as with any other type, the previous declaration already reserves memory
for 10 ints, we don’t need to use new, and that memory will be uninitialized. To access
them, as you might now from previous chapters you can just do:� �
int arr[10];
arr[0] = 5;
int a = arr[0]� �
if we try to do:� �
int arr[10];
int a = arr[5];� �
the value of a will be undefined since the memory in the array is not initialized to any
value when it’s created. Also if we try to do:� �
int arr[10];
int a = arr[25];� �
most probably our application will crash if the memory address at arr + 25 is outside
the memory that the operating system has asigned to our application.

We’ve just sayd arr + 25? what does that mean? As we’ve seen before a variable is just
some place in memmory, we can get it’s memory address which is the first byte that is
asigned to that variable in memory. With arrays is pretty much the same, for example

311

16 Memory in C++

since we know that an int occupies 4 bytes in memory, an array of 10 ints will occupy
40 bytes and those bytes are contiguous:

Remember that memory addresses are expressed as hexadecimal so 40 == 0x0028.
Now to take the address of an array, as with other variable we might want to use the &
operator and indeed we can do it like:� �
int arr[0];
int * a = &arr[0];� �
That gives us the address of the first element of the array which is indeed that of the
array, but with arrays, the same variable is actually a pointer itself:� �
int arr[10];
int * a = &arr[0];
cout << "a:␣" << a << "␣arr:␣" << arr << endl;� �
will print the same value for both a and arr. So an array is just a pointer to a memory
address with the only difference that, that memory address is the beginning of reserved
memory enough to allocate, in our case, 10 ints. All those ints will be one after another,
so when we do arr[5] we are just accessing the value that is in the memory address
of our array + the size of 5 ints. If our array started in 0x0010, and ints ocupy 4 bytes,
arr[5] would be 10 + 4 * 5 = 30 which in hexadecimal is 0x001E. We can actually
do this in our code:� �
int arr[10]
arr[5] = 20;
cout << "&arr[5]:␣" << &arr[5] << "arr+5:␣" << arr+5 << endl
cout << "arr[5]:␣" << arr[5] << "*(arr+5):␣" << *(arr+5) << endl� �
now, that’s really weird and most of the time you won’t use it, it’s called pointer arith-
metic. The first cout will print the address in memory of the int at position 5 in the
array in the first case using the & operator to get the address of arr[5] and in the
second directly by adding 5 to the first address of arr doing arr+5. In the second cout
we print the value at that memory location, using arr[5] or dereferencing the address
arr+5 using the * operator.

Note that when we add 5 to the adress of the array it’s not bytes we are adding but the
size in bytes of the type it contains, in this case +5 actually means +20 bytes, you can
check it by doing:� �
int arr[10]
arr[5] = 7;
cout << "arr:␣" << arr << "arr+5:␣" << arr+5 << endl� �
and substracting the hexadecimal values in a calculator. If you try to substract them
in your program like:

312

16.5 Memory structures, arrays and vectors

� �
int arr[10]
arr[5] = 20;
cout << "arr:␣" << arr << "arr+5:␣" << arr+5 << endl
cout << "(arr+5)␣-␣arr:␣" << (arr+5) - arr << endl� �
You will end up with 5 again because as we’ve said pointer arithmetic works with the
type size not bytes.

The syntax of pointer arithmetics is kind of complicated, and the idea of this part wasn’t
really to show pointer arithmetics itself but how arrays are just a bunch of values one
after another in memory, so don’t worry if you haven’t understood fully the syntax, is
probably something you won’t need to use. It is also important to remember that an
array variable acts as a pointer so when we refer to it without using the [] operator
we end up with a memory address not with the values it contains.

The arrays we’ve created till now are created in the stack so be careful when using big
arrays like this cause it might be problematic.

Arrays in the heap are created like anything else in the heap, by using new:� �
int arr[] = new int[10];� �
or� �
int * arr = new int[10]� �
As you can see this confirms what we’ve said before, an array variable is just a pointer,
when we call new int[10] it allocates memory to store 10 integers and returns the
memory address of the first byte of the first integer in the array, we can keep it in
a pointer like in the second example or using int arr[] which declares an array of
unkown size.

The same as other variables created in the heap we’ll need to delete this manually so
when we are done with it we need to use delete to deallocate that memory, in the
case of arrays in the heap the syntax is slightly special:� �
int arr[] = new int[10];
...
delete[] arr;� �
if you fail to use the [] when deleting it, it’ll only deallocate the first value and you’ll
end up with a memory leak.

There’s also some problems with the syntax of arrays, for example this:� �
int arr[10]
int arrB[10];
arrB = arr;� �

313

16 Memory in C++

will fail to compile. And this:� �
int arr[] = new int[10];
int arrB[] = new int[10];
arrB = arr;� �
will actually compile but as with other variables we are not copying the values that
arr points to into arrB but instead the memory address. In this case will end up with 2
pointers pointing to the same memory location, the one that we created when creating
arr and loose the memory that we allocated when initializing arrB. Again we have a
memory leak, the memory allocated when doing int arrB[] = new int[10]; is not
referenced by any variable anymore so we can’t delete it anymore. To copy arrays
there’s some c (not c++) functions liek memcpy but their syntax is kind of complex,
that’s why when working with c++ is recomended to use vectors.

C++ vectors are very similar to arrays, indeed their layout in memory is the same as an
array, they contain a bunch of values contiguous in memory and always allocated in
the heap. The main difference is that we get a nicer syntax and stack semantics. To
allocate a vector to contain 10 ints we can do:� �
vector<int> vec(10);� �
We can even give an initial value to those 10 ints in the initialization like:� �
vector<int> vec(10,0);� �
And for example copying a vector into another, works as expected:� �
vector<int> vec(10,0);
vector<int> vecB = vec;� �
Will create a copy of the contents of vec in vecB. Also even if the memory that the vector
uses is in the heap, when a vector goes out of scope, when the block in which it was
declared ends, the vector is destroyed cause the vector itself is created in the stack, so
going out of scope, triggers it’s destructor that takes care of deleting the memory that
it has created in the heap:� �
void ofApp::update(){

vector<int> vec(10);
...

}� �
That makes vectors easier to use than arrays since we don’t need to care about deleting
them, end up with dangling pointers, memory leaks… and their syntax is easier.

Vectors have some more features and using them properly might be tricky mostly if
we want to optimize for performance or use them in multithreaded applications, but
that’s not the scope of this chapter, you can find some tutorials about vectors, this is

314

16.6 Other memory structures, lists and maps

an introductory one in the openFrameworks site: vectors basics⁵ and this one explains
more advanced concepts std::vector⁶

16.6 Other memory structures, lists and maps

Having objects in memory one after another is most of the time what we want, the
access is really fast no matter if we want to access sequentially to each of them or
randomly to anyone, since a vector is just an array internally, accesing let’s say position
20 in it, just means that internally it just needs to get the memory address of the first
position and add 20 to it. In soime cases though, vectors are not the most optimal
memory structure. For example, if we want to frequnetly add or remove elements in
the middle of the vector, and you imagine the vector as a memory strip, that means
that we need to move the rest of the vector till the end one position to the right and
then insert the new element in the free location. In memory there’s no such thing as
move, moving contiguous memory means copying it and as we’ve said before, copying
memory is a relatively slow operation.

Sometimes, if there’s not enough memory to move/copy the elements, one position
to the right, the vector will need to copy the whole thing to a new memory location.
If we are working with thousands of elements and doing this very frequently, like for
example every frame, this can really slow things down a lot.

To solve that, there’s other memory structures like for example lists. In a list, memory,
is not contiguous but instead each element has a pointer to the next and previous
element so inserting one element just means changing those pointers to point to the
newly added element. In a list we never need to move elements around but it’s main
disadvantage is that not being the elements contiguous in memory it’s access can be
slightly slower than a vector, also that we can’t use it in certain cases like for example
to upload data to the graphics card which always wants contiguos memory.

Another problem of lists is that trying to access an element in the middle of the list
(what is called random access) is slow since we always have to go through all the list till
we arrive to the desired element. Lists are used then, when we seldom need to access
randomly to a position of it and we need to add or remove elements in the middle
frequently. For the specifics of the syntax of a list you can check the c++ documentation
on lists⁷

There’s several memory structures in the c++ standard library or other c++ libraries,
apart from vectors and lists we are only going to see briefly maps.

Sometimes, we don’t want to access things by their position or have an ordered list of
elements but instead have something like an index or dictionary of elements that we

⁵http://openframeworks.cc/tutorials/c++%20concepts/001_stl_vectors_basic.html
⁶http://arturocastro.net/blog/2011/10/28/stl::vector/
⁷http://www.cplusplus.com/reference/list/list/

315

http://openframeworks.cc/tutorials/c++%20concepts/001_stl_vectors_basic.html
http://arturocastro.net/blog/2011/10/28/stl::vector/
http://www.cplusplus.com/reference/list/list/

16 Memory in C++

can access by some key, that’s what a map is. In a map we can store pairs of (key,value)
and look for a value by it’s key. For example let’s say we have a collection of objects
which have a name, if that name is unique for all the objects, we can store them in a
map to be able to look for them by their name:� �
map<string, NamedObject> objectsMap;

NamedObject o1;
o1.name = "object1";
objectsMap[o1.name] = o1;� �
Later on we can look for that object using it’s name like:� �
objectsMap["object1"].doSomething();� �
Be careful though, if the object didn’t exist before, using the [] operator will create a
new one. If you are not sure, it’s usually wise to try to find it first and only use it if it
exists:� �
if(objectsMap.find("object1")!=objectsMap.end()){

objectsMap["object1"].doSomething();
}� �
You can find the complete reference on maps in the c++ documentation for maps⁸

16.7 smart pointers

As we’ve said before, traditional c pointers also called now raw pointers are sometimes
problematic, the most frequent problems are dangling pointers: pointers that probably
were once vañlid but now point to an invalid memory location, trying to dereference a
NULL pointer, posible memory leaks if we fail to deallocate memory before loosing the
reference to that memory address…

Smart pointers try to solve that by adding what we’ve been calling stack semantics
to memory allocation, the correct term for this is RAII: Resource Acquisition Is Initial-
ization⁹ And means that the creation of an object in the stack, allocates the resources
that it’ll use later. When it’s destructor is called because the variable goes out of scope,
the destructor of the object is triggered which takes care of deallocating all the used
resources. There’s some more implications to RAII but for this chapter this is what
matters to us more.

Smart pointers use this technique to avoid all the problems that we’ve seen in raw
pointers. They do this by also defining better who is the owner of some allocated

⁸http://www.cplusplus.com/reference/map/map/
⁹http://en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization

316

http://www.cplusplus.com/reference/map/map/
http://en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization

16.7 smart pointers

memory or object. Till now we’ve seen how things allocated in the stack belong to the
function or block that creates them we can return a copy of them (or in c++11 or later,
move them) out of a function as a return value but their ownership is always clear.

With heap memory though, ownership becomes way more fuzzy, someone might create
a variable in the heap like:� �
int * createFive(){

int * a = new int;
*a = 5;
return a;

}� �
Now, when someone calls that function, who is the owner of the new int? Things
can get even more complicated, what if we pass a pointer to that memory to another
function or even an object?� �
// ofApp.h
int * a;
SomeObject object;

// ofApp.cpp
void ofApp::setup(){

a = createFive();
object.setNumber(a);

}� �
who is now the owner of that memory? ofApp? object? The ownership defines among
other things who is responsible for deleting that memory when it’s not used anymore,
now both ofApp and object have a reference to it, if ofApp deletes it before object is
done with it, object might try to access it and crash the application, or the other way
around. In this case it seems logical that ofApp takes care of deleting it since it knows
about both object and the pointer to int a, but what if we change the example to :� �
// ofApp.h
SomeObject object;

// ofApp.cpp
void ofApp::setup(){

int * a = createFive();
object.setNumber(a);

}� �
or even:� �
// ofApp.h
SomeObject object;

// ofApp.cpp

317

16 Memory in C++

void ofApp::setup(){
object.setNumber(createFive());

}� �
now ofApp doesn’t know anymore about the allocated memory but both cases are
possible so we actually need to know details of the implementation of object to know
if we need to keep a reference of that variable to destroy it later or not. That, among
other things breaks encapsulation, that you might now from chapter 1. We shouldn’t
need to know how object works internally to be able to use it. This makes the logic of
our code really complicated and error prone.

Smart pointers solve this by clearly defining who owns and object and by automatically
deleting the allocated memory when the owner is destroyed. Sometimes, we need to
share an object among several owners. For that cases we have a special type of smart
pointers called shared pointers that defined a shader ownership and free the allocated
memory only when all the owners cease to use the variable.

We are only going to see this briefly, there’s lots of examples in the web about how to
use smart pointers and reference to their syntax, the most important is to understand
how they work by defining the ownership clearly compared to raw pointers and the
problems they solve.

16.7.1 unique_ptr

A unique_ptr, as it’s name suggests, is a pointer that defines a unique ownership for
an object, we can move it around and the object or function that has it at some point
is the owner of it, no more than one reference at the same time is valid and when it
goes out of scope it automatically deletes any memory that we might have allocated.

To allocate memory using a unique_ptr we do:� �
void ofApp::setup(){

unique_ptr<int> a(new int);
*a = 5;

}� �
As you can see, once it’s created it’s syntax is the same as a raw pointer, we can use
the * operator to dereference it and access or modiify it’s value, if we are working with
objects like:� �
void ofApp::setup(){

unique_ptr<Particle> p(new Particle);
p->pos.set(20,20);

}� �
We can also use the -> to access it’s member variables and functions.

318

16.7 smart pointers

When the function goes out of scope, being unique_ptr an object, it’s destructor will
get called, which internally will call delete on the allocated memory so we don’t need
to call delete on unique_ptr at all.

Now let’s say we want to move a unique_ptr into a vector:� �
void ofApp::setup(){

unique_ptr<int> a(new int);
*a = 5;

vector<unique_ptr<int> > v;
v.push_back(a); // error

}� �
That will generate a long error, depending on the compiler, really hard to understand.
What’s going on, is that a is still owned by ofApp::setup so we can’t put it in the vector,
what we can do is move it into the vector by explicitly saying that we want to move the
ownership of that unique_ptr into the vector:� �
void ofApp::setup(){

unique_ptr<int> a(new int);
*a = 5;

vector<unique_ptr<int> > v;
v.push_back(move(a));

}� �
There’s a problem that unique_ptr doesn’t solve, we can still do:� �
void ofApp::setup(){

unique_ptr<int> a(new int);
*a = 5;

vector<unique_ptr<int> > v;
v.push_back(move(a));

cout << *a << endl;
}� �
The compiler won’t fail there but if we try to execute the application it’ll crash since a
is not owned by ofApp::setup anymore, having to explicitly use move tries to solve that
problem by making the syntax clearer. After using move, we can’t use that variable
anymore except through the vector. More modern langauages like Rust¹⁰ completely
solve this by making the compiler detect this kind of uses of moved variables and
producing a compiler error. This will probably be solved at some point in c++ but by
now you need to be careful to not use a moved variable.

¹⁰http://www.rust-lang.org/

319

http://www.rust-lang.org/

16 Memory in C++

16.7.2 shared_ptr

As we’ve seen before, sometimes having unique ownership is not enough, sometimes
we need to share an object among several owners, in c++11 or later, this is solved
through shared_ptr. The usage is pretty similar to unique_ptr, we create it like:� �
void ofApp::setup(){

shared_ptr<int> a(new int);
*a = 5;

vector<shared_ptr<int> > v;
v.push_back(a);

}� �
The difference is that now, both the vector and ofApp::setup, have a reference to that
object, and doing:� �
void ofApp::setup(){

shared_ptr<int> a(new int);
*a = 5;

vector<shared_ptr<int> > v;
v.push_back(a);

cout << *a << endl;
}� �
Is perfectly ok. The way a shared_ptr works is by keeping a count of how many refer-
ences there are to it, whenever we make a copy of it, it increases that counter by one,
whenever a reference is destroyed it decreases that reference by one. When the refer-
ence cound arrives to 0 it frees the allocated memory. That reference counting is done
atomically, which means that we can share a shared_ptr across threads without having
problems with the count. That doesn’t mean that we can access the contained data
safely in a multithreaded application, just that the reference count won’t get wrong if
we pass a shared_ptr accross different threads.

320

17 Threads

by Arturo Castro¹

corrections by Brannon Dorsey

17.1 What’s a thread and when to use it

Sometimes in an application we need to execute tasks that will take a while to finish.
The perfect example is reading something from disk. In the computer the CPU is way
faster than accessing the memory which is way faster than accessing the hard disk. So
accessing, for example, an image from the HD can take a while compared to the normal
flow of the application.

In openFrameworks, and in general, usually when working with openGL, our application
will run in an infinite loop calling update/draw every cycle of the loop. If we have
vertical sync enabled, and our screens works at 60Hz, each of those cycles will last
around 16ms (1s/(60frames/s))*1000(ms/s). Loading an image from disk can take way
more than those 16ms, so if we try to load an image from our update method, for
example, we’ll notice a pause in our animation.

To solve this we usually use threads. Threads are a way of executing certain tasks inside
an application outside of the main flow. That way we can run more than one task at
once so things that are slow don’t stop the main flow of the application. We can also
use threads to accelerate tasks by dividing them in several smaller tasks and running
each of those at the same time. You can think of a thread as a subprogram inside your
program.

Every application has at least 1 thread. In openFrameworks, that thread is where the
setup/update/draw loop happens. We’ll call this the main (or openGL) thread. But we
can create more threads and each of them will run separately from the others.

So if we want to load an image in the middle of our application, instead of loading
our image in update, we can create a thread that loads the image for us. The problem
with this is that once we create a thread, the main thread doesn’t know when it has
finished, so we need to be able to communicate the results from our auxiliary thread to
the main one. There’s also problems that might arrise from different threads accessing

¹http://arturocastro.net

321

http://arturocastro.net

17 Threads

the same areas in memory. We’ll need some mechanisms to synchronize the access to
shared memory between 2 or more threads.
First let’s see how to create a thread in openFrameworks.

17.2 ofThread

Every application has at least one thread, the main thread (also called the GL thread),
when it’s using openGL.
But as we’ve said we can create auxiliary threads to do certain tasks that would take
too long to run in the main thread. In openFrameworks we can do that using the
ofThread class. ofThread is not meant to be used directly, instead we inherit from
it and mplement a threadedFunction which will later get called from the auxiliary
thread once we start it:� �
class ImageLoader: public ofThread{

void setup(string imagePath){
this->imagePath = imagePath;

}

void threadedFunction(){
ofLoadImage(path,image);

}

ofPixels image;
string path;

}

//ofApp.h

ImageLoader imgLoader;

// ofApp.cpp
void ofApp::keyPressed(int key){

imgLoader.setup("someimage.png");
imgLoader.startThread();

}� �
When we call startThread(), ofThread starts a new thread and returns immediately,
that thread will call our threadedFunction and will finish when the function ends.
This way the loading of the image happens simultaneously to our update/draw loop
and our application doesn’t stop while waiting till the image is loaded from disk.
Now, how do we know when our image is loaded? The thread will run separately from
the main thread of our application:

322

17.2 ofThread

As we see in the image the duration of loading of the image and thus the duration
of the call to threadedFunction is not automatically known to the main thread. Since
all our thread does is load the image, we can check if the thread has finished run-
ning which will tell us that the image has loaded. For that ofThread has a method:
isThreadRunning():� �
class ImageLoader: public ofThread{

void setup(string imagePath){
this->imagePath = imagePath;

}

void threadedFunction(){
ofLoadImage(path,image);

}

ofPixels image;
string path;

}

//ofApp.h
bool loading;
ImageLoader imgLoader;
ofImage img;

// ofApp.cpp
void ofApp::setup(){

loading = false;
}

void ofApp::update(){
if(loading==true && !imgLoader.isThreadRunning()){

img.getPixelsRef() = imgLoader.img;
img.update();
loading = false;

}
}

void ofApp::draw(){
img.draw(0,0);

}

void ofApp::keyPressed(int key){
if(!loading){

imgLoader.setup("someimage.png");
loading = true;
imgLoader.startThread();

}
}� �

323

17 Threads

Now as you can see we can only load a new image when the first one has finished
loading. What if we want to load more than one? A possible solution would be to start
a new thread and ask it if it’s been loaded already:� �
class ImageLoader: public ofThread{

ImageLoader(){
loading = false;

}

void load(string imagePath){
this->imagePath = imagePath;
loading = true;
startThread();

}

void threadedFunction(){
ofLoadImage(path,image);
loaded = true;

}

ofPixels image;
string path;
bool loading;
bool loaded;

}

//ofApp.h
vector<unique_ptr<ImageLoader>> imgLoaders;
vector<ofImage> imgs;

// ofApp.cpp
void ofApp::setup(){

loading = false;
}

void ofApp::update(){
for(int i=0;i<imgLoaders.size();i++){

if(imgLoaders[i].loaded){
if(imgs.size()<=i) imgs.resize(i+1);

imgs[i].getPixelsRef() = imgLoaders[i].img;
imgs[i].update();
imgLoaders[i].loaded = false;

}
}

}

void ofApp::draw(){
for(int i=0;i<imgLoaders.size();i++){

324

17.2 ofThread

imgs[i].draw(x,y);
}

}

void ofApp::keyPressed(int key){
imgLoaders.push_back(move(unique_ptr<ImageLoader>(new

ImageLoader)));
imgLoaders.back().load("someimage.png");

}� �
Another possibility would be to use 1 thread only. To do that a possible solution would
be to use a queue in our loading thread whenever we want to load a new image. To do
this we insert it’s path in the queue and when the threadedFunction finishes loading
one image it checks the queue. If there’s a new image it loads it and it is removed from
the queue.

The problem with this is that we will be trying to access the queue from 2 different
threads, and as we’ve mentioned in the memory chapter, when we add or remove
elements to a memory structure there’s the possibility that the memory will be moved
somewhere else. If that happens while one thread is trying to access it we can easily
end up with a dangling pointer that will cause the application to crash. Imagine the
next sequence of instruction calls from the 2 different threads:� �

loader thread: finished loading an image
loader thread: pos = get memory address of next element to load
main thread: add new element in the queue
main thread: queue moves in memory to an area with enough

space to allocate it
loader thread: try to read element in pos <- crash pos is no

longer a valid memory address� �
At this point we might be accessing a memory address that doesn’t contain a string
anymore, or even trying to access a memory address that is outside of the memory
assigned to our application. In this case the OS will kill it sending a segmentation fault
signal as we’ve seen in the memory chapter.

The reason this happens is that since thread 1 and 2 run simultaneously we don’t know
in which order their instructions area going to get executed. We need a way to ensure
that thread 1 cannot access the queue while thread 2 is modifying it and viceversa.
For that we’ll use some kind of lock: In C++ usually a mutex, in openFrameworks an
ofMutex.

But before seeing mutexes, let’s see briefly some particulars of using thread while
using openGL.

325

17 Threads

17.3 Threads and openGL

You might have noticed in the previous examples:� �
class ImageLoader: public ofThread{

ImageLoader(){
loaded = false;

}
void setup(string imagePath){

this->imagePath = imagePath;
}

void threadedFunction(){
ofLoadImage(path,image);
loaded = true;

}

ofPixels image;
string path;
bool loaded;

}

//ofApp.h
ImageLoader imgLoader;
ofImage img;

// ofApp.cpp
void ofApp::setup(){

loading = false;
}

void ofApp::update(){
if(imgLoader.loaded){

img.getPixelsRef() = imgLoader.img;
img.update();
imgLoader.loaded = false;

}
}

void ofApp::draw(){
img.draw(0,0);

}

void ofApp::keyPressed(int key){
if(!loading){

imgLoader.setup("someimage.png");
imgLoader.startThread();

}
}

326

17.3 Threads and openGL

� �
Instead of using an ofImage to load images, we are using an ofPixels and then in the
main thread we use an ofImage to put the contents of ofPixels into it. This is done
because openGL, in principle, can only work with 1 thread. That’s why we call our main
thread the GL thread.

As we mentioned in the advanced graphics chapter and other parts of this book,
openGL works asynchronously in some kind of client/server model. Our application is
the client sending data and drawing instructions to the openGL server which will send
them to the graphics card in it’s own times.

Because of that, openGL knows how to work with one thread, the main thread from
which the openGL context was created. But if we try to do openGL calls from a different
thread we will most surely crash the application, or at least not get the desired results.

When we call img.loadImage(path) on an ofImage, it’ll actually do some openGL calls,
mainly create a texture and upload to it the contents of the image. If we did that from
a thread that isn’t the GL thread, our application will probably crash or just don’t load
the texture properly.

There’s a way to tell ofImage, and most other objects that contain pixels and textures
in openFrameworks, to not use those textures and instead work only with pixels. That
way we could use an ofImage to load the images to pixels and later in the main thread
activate the textures to be able to draw the images:� �
class ImageLoader: public ofThread{

ImageLoader(){
loaded = false;

}
void setup(string imagePath){

image.setUseTexture(false);
this->imagePath = imagePath;

}

void threadedFunction(){
image.loadImage(path);
loaded = true;

}

ofImage image;
string path;
bool loaded;

}

//ofApp.h
ImageLoader imgLoader;

// ofApp.cpp

327

17 Threads

void ofApp::setup(){
loading = false;

}

void ofApp::update(){
if(imgLoader.loaded){

imgLoader.image.setUseTexture(true);
imgLoader.image.update();
imgLoader.loaded = false;

}
}

void ofApp::draw(){
imageLoader.image.draw(0,0);

}

void ofApp::keyPressed(int key){
if(!loading){

imgLoader.setup("someimage.png");
imgLoader.startThread();

}
}� �
There are ways to use openGL from different threads, for example creating a shared
context to upload textures in a different thread or using PBO’s to map a memory area
and later upload to thatmemory area from a different thread but that’s out of the scope
of this chapter. In general remember that accessing openGL outside of the GL thread is
not safe. In openFrameworks you should only do operations that involve openGL calls
from the main thread, that is, from the calls that happen in the setup/update/draw
loop, the key and mouse events, and the related ofEvents. If you start a thread and
call a function or notify an ofEvent from it, that call will also happen in the auxiliary
thread, so be careful to not do any GL calls from there.

A very specific case is sound, sound APIs in openFrameworks, in particular ofSound-
Stream, create their own threads since sound’s timing needs to be super precise. So
when working with ofSoundStream be careful not to use any openGL calls and in gen-
eral apply the same logic as if you where inside the threadedFunction of an ofThread.
We’ll see more about this in the next sections.

17.4 ofMutex

Before we started the openGL and threads section we were talking about how accessing
the same memory area from 2 different threads can cause problems. This mostly oc-
curs if we write from one of the threads causing the data structure to move in memory
or make a location invalid.

328

17.4 ofMutex

To avoid that we need something that allows to access that data to only one thread
simultaneously. For that we use something called mutex. When one thread want’s to
access the shared data, it locks the mutex and when a mutex is locked any other thread
trying to lock it will get blocked there until the mutex is unlocked again. You can think
of this as some kind of token that each thread needs to have to be able to access the
shared memory.

Imagine you are with a group of people building a tower of cards, if more than one at
the same time tries to put cards on it it’s very possible that it’ll collapse so to avoid that,
anyone who wants to put a card on the tower, needs to have a small stone, that stone
gives them permission to add cards to the tower and there’s only one, so if someone
wants to add cards they need to get the stone but if someone else has the stone then
they have to wait till the stone is freed. If more than one wants to add cards and the
stone is not free they queue, the first one in the queue gets the stone when it’s finally
freed.

A mutex is something like that, to get the stone you call lock on the mutex, once you are
done, you call unlock. If some other thread calls lock while another thread is holding
it, they are put in to a queue, the first thread that called lock will get the mutex when
it’s finally unlocked:� �

thread 1: lock mutex
thread 1: pos = access memory to get position to write
thread 2: lock mutex <- now thread 2 will stop it's execution

till thread 1 unlocks it so better be quick
thread 1: write to pos
thread 1: unlock mutex
thread 2: read memory
thread 2: unlock mutex� �

When we lock a mutex from one thread and another thread tries to lock it, that stops
it’s execution. For this reason we should try to do only fast operations while we have
the mutex locked in order to not lock the execution of the main thread for too long.

In openFrameworks, the ofMutex class allows us to do this kind of locking. The syntax
for the previous sequence would be something like:� �

thread 1: mutex.lock();
thread 1: vec.push_back(something);
thread 2: mutex.lock(); // now thread 2 will stop it's execution

until thread 1 unlocks it so better be quick
thread 1: // end of push_back()
thread 1: mutex.unlock();
thread 2: somevariable = vec[i];
thread 2: mutex.unlock();� �

We just need to call lock() and unlock() on our ofMutex from the different threads,
from threadedFunction and from the update/draw loop when we want to access a

329

17 Threads

piece of shared memory. ofThread actually contains an ofMutex that can be locked
using lock()/unlock(), we can use it like:� �
class NumberGenerator{
public:

void threadedFunction(){
while (isThreadRunning()){

lock();
numbers.push_back(ofRandom(0,1000));
unlock();
ofSleepMillis(1000);

}
}

vector<int> numbers;
}

// ofApp.h

NumberGenerator numberGenerator;

// ofApp.cpp

void ofApp::setup(){
numberGenerator.startThread();

}

void ofApp::update(){
numberGenerator.lock();
while(!numberGenerator.empty()){

cout << numberGenerator.front() << endl;
numberGenerator.pop_front();

}
numberGenerator.unlock();

}� �
As we’ve said before, when we lock a mutex we stop other threads from accessing it. It
is important that we try to keep the lock time as small as possible or else we’ll end up
stopping the main thread anyway making the use of threads pointless.

17.5 External threads and double buffering

Sometimes we don’t have a thread that we’ve created ourselves, but instead we are us-
ing a library that creates it’s own thread and calls our application on a callback. Let’s
see an example with an imaginary video library that calls some function whenever

330

17.5 External threads and double buffering

there’s a new frame from the camera, that kind of function is called a callback be-
cause some library calls us back when something happens, the key and mouse events
functions in OF are examples of callbacks.� �
class VideoRenderer{
public:

void setup(){
pixels.allocate(640,480,3);
texture.allocate(640,480,GL_RGB);
videoLibrary::setCallback(this, &VideoRenderer::frameCB);
videoLibrary::startCapture(640,480,"RGB");

}

void update(){
if(newFrame){

texture.loadData(pixels);
newFrame = false;

}
}

void draw(float x, float y){
texture.draw(x,y);

}

void frameCB(unsigned char * frame, int w, int h){
pixels.setFromPixels(frame,w,h,3);
newFrame = true;

}

ofPixels pixels;
bool newFrame;
ofTexture texture;

}� �
Here, even if we don’t use a mutex, our application won’t crash. That is because the
memory in pixels is preallocated in setup and it’s size never changes. For this reason
thememory won’t move from it’s original location. The problem is that both the update
and frame_cb functions might be running at the same time so we will probably end
up seeing tearing². Tearing is the same kind of effect we can see when we draw to the
screen without activating the vertical sync.

To avoid tearing we might want to use a mutex:� �
class VideoRenderer{
public:

void setup(){
pixels.allocate(640,480,3);

²http://en.wikipedia.org/wiki/Screen_tearing

331

http://en.wikipedia.org/wiki/Screen_tearing

17 Threads

texture.allocate(640,480,GL_RGB);
videoLibrary::setCallback(this, &VideoRenderer::frameCB);
videoLibrary::startCapture(640,480,"RGB");

}

void update(){
mutex.lock();
if(newFrame){

texture.loadData(pixels);
newFrame = false;

}
mutex.unlock();

}

void draw(float x, float y){
texture.draw(x,y);

}

void frameCB(unsigned char * frame, int w, int h){
mutex.lock();
pixels.setFromPixels(frame,w,h,3);
newFrame = true;
mutex.unlock();

}

ofPixels pixels;
bool newFrame;
ofTexture texture;
ofMutex mutex;

}� �
That will solve the tearing, but we are stopping the main thread while the frameCB is
updating the pixels and stopping the camera thread while the main one is uploading
the texture. For small images this is usually ok, but for bigger images we could loose
some frames. A possible solution is to use a technique called double or even triple
buffering:� �
class VideoRenderer{
public:

void setup(){
pixelsBack.allocate(640,480,3);
pixelsFront.allocate(640,480,3);
texture.allocate(640,480,GL_RGB);
videoLibrary::setCallback(this, &VideoRenderer::frameCB);
videoLibrary::startCapture(640,480,"RGB");

}

void update(){
bool wasNewFrame = false;

332

17.5 External threads and double buffering

mutex.lock();
if(newFrame){

swap(pixelsFront,pixelsBack);
newFrame = false;
wasNewFrame = true;

}
mutex.unlock();

if(wasNewFrame) texture.loadData(pixelsFront);
}

void draw(float x, float y){
texture.draw(x,y);

}

void frameCB(unsigned char * frame, int w, int h){
pixelsBack.setFromPixels(frame,w,h,3);
mutex.lock();
newFrame = true;
mutex.unlock();

}

ofPixels pixelsFront, pixelsBack;
bool newFrame;
ofTexture texture;
ofMutex mutex;

}� �

With this we are locking the mutex for a very short time in the frame callback to set
newFrame = true in the main thread. We do this to check if there’s a new frame
and then to swap the front and back buffers. swap is a c++ standard library function
that swaps 2 memory areas so if we swap 2 ints a and b, a will end up having the
value of b and viceversa, usually this happens by copying the variables but swap is
overridden for ofPixels and swaps the internal pointers to memory inside frontPixels
and backPixels to point to one another. After calling swap, frontPixels will be
pointing to what backPixels was pointing to before, and viceversa. This operation
only involves copying the values of a couple of memory addresses plus the size and
number of channels. For this reason it’s way faster than copying the whole image or
uploading to a texture.

Triple buffering is a similar technique that involves using 3 buffers instead of 2 and is
useful in some cases. We won’t see it in this chapter.

333

17 Threads

17.6 ofScopedLock

Sometimes we need to lock a function until it returns, or lock for the duration of a full
block. That is exactly what a scoped lock does. If you’ve read the memory chapter you
probably remember about what we called initially, stack semantics, or RAII Resource
Adquisition Is Initialization³. A scoped lock makes use of that technique to lock a mutex
for the whole duration of the block, even any copy that might happen in the same
return call if there’s one.

For example, the previous example could be turned into:� �
class VideoReader{
public:

void setup(){
pixelsBack.allocate(640,480,3);
pixelsFront.allocate(640,480,3);
texture.allocate(640,480,GL_RGB);
videoLibrary::setCallback(&frame_cb);
videoLibrary::startCapture(640,480,"RGB");

}

void update(){
bool wasNewFrame = false;

{
ofScopedLock lock(mutex);

if(newFrame){
swap(fontPixels,backPixels);
newFrame = false;
wasNewFrame = true;

}
}

if(wasNewFrame) texture.loadData(pixels);
}

void draw(float x, float y){
texture.draw(x,y);

}

static void frame_cb(unsigned char * frame, int w, int h){
pixelsBack.setFromPixels(frame,w,h,3);
ofScopedLock lock(mutex);
newFrame = true;

}

ofPixels pixels;

³http://en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization

334

http://en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization

17.7 Poco::Condition

bool newFrame;
ofTexture texture;
ofMutex mutex;

}� �
A ScopedLock is a good way of avoiding problems because we forgot to unlock a mutex
and allows us to use the {} to define the duration of the lock which is more natural to
C++.

There’s one particular case when the only way to properly lock is by using a scoped
lock. That’s when we want to return a value and keep the function locked until after
the value was returned. In that case we can’t use a normal lock:� �
ofPixels accessSomeSharedData(){

ofScopedLock lock(mutex);
return modifiedPixels(pixels);

}� �
We could make a copy internally and return that later, but with this pattern we avoid a
copy and the syntax is shorter.

17.7 Poco::Condition

A condition, in threads terminology, is an object that allows to synchronize 2 threads.
The pattern is something like this: one thread waits for something to happen before
starting it’s processing. When it finishes, instead of finishing the thread, it locks in the
condition and waits till there’s new data to process. An example of this could be the
image loader class we were working with earlier. Instead of starting one thread for
every image, we might have a queue of images to load. The main thread adds image
paths to that queue and the auxiliary thread loads the images from that queue until it
is empty. The auxiliary thread then locks on a condition until there’s more images to
load.

Such an example would be too long to write in this section, but if you are interested in
how something like that might work, take a look at ofxThreadedImageLoaded (which
does just that).

Instead let’s see a simple example. Imagine a class where we can push urls to pings
addresses in a different thread. Something like:� �
class ThreadedHTTPPing: public ofThread{
public:

void pingServer(string url){
mutex.lock();
queueUrls.push(url);

335

17 Threads

mutex.unlock();
}

void threadedFunction(){
while(isThreadRunning()){

mutex.lock();
string url;
if(queueUrls.empty()){

url = queueUrls.front();
queueUrls.pop();

}
mutex.unlock();
if(url != ""){

ofHttpUrlLoad(url);
}

}
}

private:
queue<string> queueUrls;

}� �
The problem with that example is that the auxiliary thread keeps running as fast as
possible in a loop, consuming a whole CPU core from our computer which is not a very
good idea.

A typical solution to this problem is to sleep for a while at the end of each cycle like:� �
class ThreadedHTTPPing: public ofThread{
public:

void pingServer(string url){
mutex.lock();
queueUrls.push(url);
mutex.unlock();

}

void threadedFunction(){
while(isThreadRunning()){

mutex.lock();
string url;
if(queueUrls.empty()){

url = queueUrls.front();
queueUrls.pop();

}
mutex.unlock();
if(url != ""){

ofHttpUrlLoad(url);
}
ofSleepMillis(100);

336

17.7 Poco::Condition

}
}

private:
queue<string> queueUrls;

}� �
That alleviates the problem slightly but not completely. The thread won’t consume as
much CPU now, but it sleeps for an unnecesarily while when there’s still urls to load.
It also continues to run in the background even when there’s no more urls to ping.
Specially in small devices powered by batteries, like a phone, this pattern would drain
the battery in a few hours.

The best solution to this problem is to use a condition:� �
class ThreadedHTTPPing: public ofThread{

void pingServer(string url){
mutex.lock();
queueUrls.push(url);
condition.signal();
mutex.unlock();

}

void threadedFunction(){
while(isThreadRunning()){

mutex.lock();
if (queue.empty()){

condition.wait(mutex);
}
string url = queueUrls.front();
queueUrls.pop();
mutex.unlock();

ofHttpUrlLoad(url);
}

}

private:
Poco::Condition condition;
queue<string> queueUrls;

}� �
Before we call condition.wait(mutex) the mutex needs to be locked, then
the condition unlocks the mutex and blocks the execution of that thread until
condition.signal() is called. When the condition awakens the thread because it’s
been signaled, it locks the mutex again and continues the execution. We can read
the queue without problem because we know that the other thread won’t be able to
access it. We copy the next url to ping and unlock the mutex to keep the lock time to

337

17 Threads

a minimum. Then outside the lock we ping the server and start the process again.

Whenever the queue gets emptied the condition will block the execution of the thread
to avoid it from running in the background.

17.8 Conclusion

As we’ve seen threads are a powerfull tool to allow for several tasks to happen simulta-
neously in the same application. They are also hard to use, the main problem is usually
accessing shared resouces, usually shared memory. We’ve only seen one specific case,
how to use threads to do background tasks that will pause the execution of the main
task, there’s other cases where we can parallelize 1 task by dividing it in small subtasks
like for example doing some image operation by dividing the image in for subregions
and assigning a thread to each. For those cases there’s special libraries that make the
syntax easier, OpenCv for example can do some operations using more than one core
through TBB⁴ and there’s libraries like the same TBB or OpenMP⁵ that allow to specify
that a loop should be divided and run simultaneol¡usly in more than one core

⁴https://www.threadingbuildingblocks.org/
⁵http://openmp.org/wp/

338

https://www.threadingbuildingblocks.org/
http://openmp.org/wp/

18 ofxiOS

by Lukasz Karluk¹

18.1 OpenFrameworks on iOS devices.

18.2 Intro

The beauty behind OpenFrameworks is its cross-platform nature and the ability to run
the same code on your desktop and mobile devices while achieving the same results.

Support for the iPhone in OpenFrameworks started when the very early iPhones
(iPhone 2 or 3 - fact check!) were being released. Some clever people from the OF
community realised that the iPhone supported OpenGL which also happened to be
what OF was using for rendering graphics, and even more importantly, that C++ code
could be mixed with Obj-C code. With these two very important pieces of the puzzle
in place it was a matter of tweaking the core OF code to begin it’s support for iOS
devices. It was then when ofxiPhone was born.

Since then Apple have released a number of other devices like the iPad and so the
ofxiPhone title became less accurate and was eventually changed to ofxiOS, Open-
Frameworks support for all iOS devices.

18.3 Intro to Objective-C

We’ve briefly mentioned Objective-C or Obj-C for short and some people may know or
may not know what it is. Obj-C is the main programming language used by Apple for
OSX and iOS systems. Obj-C is also a superset of the C programming language which
makes it possible to compile C and C++ code with an Obj-C compiler, which means its
possible to mix OF C++ code with native Obj-C code.

Some people right about now may be letting off long desperate sighs, thinking - “I’m
just starting to get my head around C++ and now I have to learn Obj-C… what tha?!”
Lucky for you OpenFrameworks has done all the hard work of keeping most Obj-C

¹http://www.julapy.com/

339

http://www.julapy.com/

18 ofxiOS

Figure 18.1: Figure 1: OF on iPhone.

340

18.3 Intro to Objective-C

code hidden so you don’t have to worry about it. By using the OpenFrameworks API,
you can access most iOS device functionality like the gyro, accelerometer or camera
without having to type any Obj-C code what so ever. BUT, the time will come when
you’re comfortable with the iOS environment and you want to access something really
specific, so specific that OF hasn’t even considered wrapping for you. In this case you’ll
need to put your Obj-C hat on and get those hands dirty.

Obj-C syntax can look a little daunting when you first look at it. It certainly scared the
hell out of me the first time I saw it. And you may notice its unusually very long which is
due to it’s very explicit nature, meaning that all function names are very descriptive of
the functionality they perform and all those words add up. You may think that it would
take longer to work with an explicit language but its actually the opposite, because the
functions are easier to find and in XCode you can usually start typing the function you
are looking for and XCode will give you a list of suggestions and complete the function
name for you.

18.3.1 Obj-C Class structure

Like in C++, in Obj-C your code is broken down into two files, the header file and the
implementation file. The header file still has the same .h extension but a implementa-
tion file has a .m extension. Here is a very basic example of how these two files look
like.

I created a class called MyClass which extends a UIView class.

In the header (.h) file below we need to define our class interface and we do this
between the @interface and @end tags. The class interface defines instance variables
and public methods, but for now we’re going to leave it empty.� �
@interface MyClass : NSObject {

//
}

@end� �
The implementation (.m) file is where you add your actual code for the methods de-
fined in the header file. The first thing you need to do is import your MyClass.h
header file which defines the structure and then write your implementation between
the @implementation and @end tags.� �
#import "MyClass.h"

@implementation MyClass

@end� �

341

18 ofxiOS

18.3.2 Make new Obj-C Class in XCode

Nice thing about XCode is that it makes programming easier by creating the basic struc-
ture of a class when you first create it, so you don’t have to type out the above code
structure everytime. By going to File menu, selecting New and then File… a dialogue will
appear showing all the files that XCode can create for you. Select Objective-C class
and another dialogue will appear where you can name your new Class and specify
which Subclass it will extend. MyClass will then be automatically generated, ready for
you to enter your code into.

18.3.3 Variables and Methods

So now that we have the bare bones of our class, lets add some methods and variables
to it so it actually does something. Lets start simple and say that MyClass contains two
string variables, one for my first name and one for my last name. We will also want to
create some methods for setting and retrieving these variables from the class.

MyClass header (.h) file now looks like this,� �
@interface MyClass : NSObject {

NSString * firstName;
NSString * lastName;

}

- (void)setFirstName:(NSString *)nameStr;
- (void)setLastName:(NSString *)nameStr;

- (NSString *)getFirstName;
- (NSString *)getLastName;

342

18.3 Intro to Objective-C

@end� �
Inside MyClass interface, you can now see two NSString variables being defined,
firstName and lastName. NSString is the Obj-C equivalent of string in C++. The
* means that firstName and lastName are pointers to NSString objects. In Obj-C,
all instance variables are private by default, which means you can not access them
directly from outside of the class object, so you need to create accessor methods to
set and get these values.

Lets look at how methods are structured in Obj-C and take setFirstName as an exam-
ple,� �
- (void)setFirstName:(NSString *)nameStr;� �
The very first thing that comes before every Obj-C method is a dash - or a plus +. A
dash means that the method is a instance method and a plus means that the method
is a class method. Next in line we have the return type of the method. In this instance
method we are setting the first name and not returning any value, so therefor the return
type is void. Next is the name of the method setFirstName and then separated by
a colon : are the variables that we pass into the method. In this example we are
passing in a nameStr variable and we have to specify the type of that variable which
is NSString.

Now that we have defined our variables and methods in the class interface, lets look
at the implementation file where our functional code will live.� �
#import "MyClass.h"

@implementation MyClass

- (void)setFirstName:(NSString *)nameStr {
[firstName autorelease];
firstName = [nameStr retain];

}

- (void)setLastName:(NSString *)nameStr {
[lastName autorelease];
lastName = [nameStr retain];

}

- (NSString *)getFirstName {
return firstName;

}

- (NSString *)getLastName {
return lastName;

}

343

18 ofxiOS

@end� �
In terms of structure, the methods look almost exactly the same as the in the class
interface, only now each method has curly braces on the end { and } which symbolise
the begining and end of the method code. The two getter methods (getFirstName and
getLastName) are pretty straight forward and simply return a pointer to a NSString
variable. The setter methods (setFirstName and setLastName) contain code which
is more specific to Obj-C and here is where we first touch upon the topic of memory
managemen in Obj-C.

18.3.4 Memory Management

Lets look at what is going on inside the setFirstName method.� �
[firstName autorelease];
firstName = [nameStr retain];� �
All that the above is doing is assigning a new string value to firstName but it’s also
making sure the previous value is released before a new one is retained to prevent
memory leaks. Calling autorelease on a object is telling the object to release at
some stage in the not too distant future when it is no longer being used, usually at the
end of the method when it is no longer needed. We then need to retain the new string
which you can think of as binding it to the NSString * firstName pointer reference.
Retaining and releasing objects is at the core of the Obj-Cmemorymanagement system
and is know as reference counting.
The basic theory behind reference counting is that when ever an object is retained, the
reference count goes up by +1 and everytime it is released, the reference count is goes
down by -1. When the reference count is back down to zero, the object is released from
memory.

NEED TO RECREATE THIS
DIAGRAM.
There are a couple way of creating an Obj-C object and we’ll use the NSString class to
demonstrate. Below is a code sample of how a NSString object is created using the
alloc method. Calling alloc on a NSString class returns a new NSString object. A
very important thing to note here is that when an object is created using alloc, it’s
reference count is at +1. So behind the scenes, Obj-C has created a new string object
and has already called retain on the object for us. The final line in the code example
is initialising the string object with some text which says "I'm a string".

344

18.3 Intro to Objective-C

� �
firstName = [NSString alloc];
[firstName initWithString:@"I'm a string"];� �
Another way of creating a string is using NSString class methods shown in the
code sample below. When a object is created using class method, it is created in a
autorelease state which means it’s reference count is at +1 but because it has been
marked as autorelease, it will be released from memory soon after if not retained.
This is why we need to call retain on the new string object, so that we can hold onto
its reference and use it somewhere else in our code.� �
firstName = [NSString stringWithString:@"I'm a string"];
[firstName retain];� �
The general rule when it comes to Obj-C memory management is if you create an object
using the alloc method or call retain on a object, you have taken responsibility for
that object and sometime in the the future you will have to release it.

18.3.5 Ins and Outs

With everything that was just discussed, lets take another look at MyClass which will
now include the init and dealloc methods, the entry and exit points of all Obj-C
objects.� �
#import "MyClass.h"

@implementation MyClass

- (id)init {
self = [super init];
if(self != nil) {

firstName = [[NSString alloc] initWithString:@"Lukasz"];
lastName = [[NSString alloc] initWithString:@"Karluk"];

}
return self;

}

- (void)dealloc {
[firstName release];
[lastName release];
[super dealloc];

}

- (void)setFirstName:(NSString *)nameStr {
[firstName autorelease];
firstName = [nameStr retain];

}

345

18 ofxiOS

- (void)setLastName:(NSString *)nameStr {
[lastName autorelease];
lastName = [nameStr retain];

}

- (NSString *)getFirstName {
return firstName;

}

- (NSString *)getLastName {
return lastName;

}

@end� �
Both the init and dealloc methods are already defined in every Obj-C object so we
are then extending these methods and overriding their behaviour. The init method
is the first method to be called on every Obj-C object which makes it the ideal place
to intialise your variables. The init method always returns a reference of itself with
type id, which in C++ is equivalent to returning void *. Because we are extending
the init method, we need to make sure we call it’s super method first, otherwise the
object will not initialise correctly. We then make sure that [super init] is called
successfully without any issues before initialising variables firstName and lastName.
The last thing an init method needs to do is return a reference to itself.

The dealloc method is called when an object is about to be released from memory,
which makes it the perfect place to release any other memory the object is holding
onto. firstName and lastName objects are released and the last order of business is
calling the [super dealloc] method, before the object is completely removed from
memory.

18.3.6 Properties

Nice thing about Obj-C is that it really makes programming a lot faster by providing syn-
tax shortcuts where possible. In MyClass we had to create getter and setter methods
for passing in the firstName and lastName into the object. In Obj-C there is actually a
much faster way of declaring getters and setters with the use of properties. Properties
are a syntax feature that allow to automatically declare getter and setter accessors.
Here is how the @property syntax looks like in the header file,� �
@interface MyClass : NSObject {

NSString * firstName;
NSString * lastName;

}

346

18.3 Intro to Objective-C

@property (retain) NSString * firstName;
@property (retain) NSString * lastName;

@end� �
You can see that we’ve ditched the old getter and setter methods and have now re-
placed it with the @property syntax. After the @property tag we can also declare
some extra setter attributes, where we have retain in brackets. This means that every
time we use the firstName property to set a new value, it will automatically retain
the new NSString which is super handy and means we’re writing less code to get the
same result.

Next lets jump into the implementation file,� �
#import "MyClass.h"

@implementation MyClass

@synthesize firstName;
@synthesize lastName;

- (id)init {
self = [super init];
if(self != nil) {

self.firstName = [[[NSString alloc]
initWithString:@"Lukasz"] autorelease];

self.lastName = [[[NSString alloc] initWithString:@"Karluk"]
autorelease];

}
return self;

}

- (void)dealloc {
self.firstName = nil;
self.lastName = nil;
[super dealloc];

}

@end� �
The first thing we need to do inside the implementation file is @synthesize the
@property that we declared in the header file. @synthesize tells the Obj-C compiler
to generate the getter and setters methods defined through the @property directive
in the header.

Now we can access the firstName and lastName string objects via the getter and
setter methods created by the @property directive. These methods are generated
internally and we don’t actually see them but everytime we write self.firstName or

347

18 ofxiOS

self.lastName, we are accessing the getter and setter methods.

In the init method, one thing that has changed is that an autorelease method is
being called on the NSString object as soon as it is created. This might initially look
incorrect as it appears that we are creating an object, retaining it and then releasing
it which will bring the reference count back down to zero and means the object will
be released from memory. But we have to realise that we are using the setter method
created by the @property directive which automatically retains the object. This means
the final reference count will be +1.

In the dealloc method you will notice that firstName and lastName are not actually
being released but are set to nil via the @property setter. Behind the scenes, when
the setter receives a nil value it first checks if the object is valid and if so it automat-
ically calls release on the object and invalidates the object by setting it to nil. If we
were to write out this logic it would look like this,� �
if(firstName != nil) {

[firstName release];
firstName = nil;

}� �
Properties definitely take a little while to get used to but when mastered are very pow-
erful tool to faster and flexible coding.

18.3.7 Delegates

18.3.8 Automatic Reference Counting (ARC)

All this talk of memory management can get pretty heavy, so you’ll be happy to know
that Obj-C have made programming easier using Automatic Reference Countng (ARC).
ARC does all the memory management for you so you no longer have to worry about
retaining and releasing objects, its all done by the compiler. ARC works by looking at
your code at compile time and making sure that each object is retained for as long as
it needs to be but also that its released as soon as it no longer used.

By default ARC is turned off inside ofxiOS XCode projects, but can be easily turned on
in the project’s Build Settings. Worth noting is that even though ARC can be turned on,
ofxiOS source files are still compiled with non-ARC. ARC is only applied to Obj-C files
in the main XCode project.

When ARC is turned on, it is possible to specify which Obj-C class should use ARC and
which should use regular memory management. You can disable ARC for a specific
class using the -fno-objc-arc compiler flag for that class.

348

18.3 Intro to Objective-C

Figure 18.2: Figure 1: OF on iPhone.

Figure 18.3: Figure 1: OF on iPhone.

349

18 ofxiOS

18.3.9 Mixing Obj-C and C++ (Objective-C++)

Since both the Obj-C and C++ languages are a subset of the C language, it is possible
to mix the two together. First of all before you start typing C++ code into your Obj-
C classes or vise versa you need to rename your implementation file extension from
(*.m) => (*.mm). This lets the XCode compiler know that the file is a combination of
Obj-C and C++.

ofApp.mm by default is already to setup this way so you can start using Obj-C code
inside your app. One example of this might be that you would like to use UIKit to add
some kind of user interface over the top of your ofApp. There are many very useful
possibilities of mixing Obj-C with C++ and we’ll go into more detail later in this chapter.

18.3.10 TODO

• what does objective-C look like?
• differences between C++ and Obj-C (string, arrays)
• brief overview of Obj-C memory management compared to C++ (retain/release
and ARC)

• How C++ and Obj-C can be mixed together. Mention .mm files.

good reference => http://cocoadevcentral.com/d/learn_objectivec/

18.4 Under the Hood

UIKit is the backbone of all iOS apps. It is a collection of classes or framework that
provide a standardised structure for creating and running applications. UIKit provides
the skeleton structure into which you can insert your custom application code and
makes it easy to receive system events like device orientation changes or memory
warning as two examples amongst many.

UIKit organises its classes using the MVC (model-view-controller) design pattern. When
you get into iOS programming you will see the MVC patterns everywhere, especially
when working with UIViewControllers. MVC breaks up code into one of the three cate-
gories and makes the code more extensible and reusable.

When you run a iOS app, it always begins with the UIApplication class which listens
for system events and passes them into the app code for further handling. The first
class you can start writing your own code into is the Application Delegate. The App
Delegate is responsible for creating and managing the UIWindow as well as the root
UIViewController, two very important objects in the iOS app structure. UIWindow’s job
is to coordinate and display content on the screen. As for a UIViewController, you can
think of it as a single app screen and using the this analogy the root UIViewController

350

18.4 Under the Hood

can be thought of as the home screen for the app. The root UIViewController is the
bottommost view controller on top of which you can stack other view controllers, aptly
named the view controller stack. When stacking UIViewController objects on top of one
another you get the beginnings of an app. You now have a few screens with different
UIView objects that you can navigate between.

(explain UIViews)

So that’s the super compressed summary which is only skiming the surface of iOS
development. It can be a very steap learning curve and this is where ofxiOS comes to
the rescue as an elevator that takes you straight to the top of that curve. ofxiOS allows
you to make native iOS apps using OpenFrameworks without knowing anything about
UIKit or Obj-C at all.

Inside ofxiOS are classes which extend UIKit and take care of creating the iOS appli-
cation structure. The three core classes are ofxiOSAppDelegate which extends the ap-
plication delegate, ofxiOSViewController which extends a UIViewController and is the
root view controller for an OF application, and ofxiOSEAGLView which extends a UIView
and is the view to which OpenGL content is drawn to.

ofxiOSAppDelegate is mainly in responsible for listening to and handling global events
like orientation changes, memory warnings, and events for when the application is
exited or moves to the background state. ofxiOSAppDelegate alerts the ofApp that that
these events have happened and it is then up to the programmer to handle these
events as they chose inside the ofApp.

ofxiOSViewController is the OF UIViewController and like the name suggest, its main
responsibility is to create and control the OF UIView. It also takes care of orientation
changes and can rotate an OF application to match the orientation changes on the
device.

ofxiOSEAGLView is the OF UIView which displays all OF rendered content. ofx-
iOSEAGLView is respinsible for creating a ESRenderer which encapsulates low-level
OpenGL setup and makes it possible to render OpenGL graphics into a UIView. ofx-
iOSEAGLView also listens out for touch events which it passes into the ofApp to be
handled by the programmer.

TODO // need to make a diagram to visualise all this.

18.4.1 ofxiOSApp

When you open up a empty ofxiOS project you will immediatly notice some differences
in the ofApp header file. You will see that ofApp extends ofxiOSApp instead of of-
BaseApp as you would see when running a desktop app. This is because iOS apps and
desktop apps are slightly different, desktop apps receive mouse and keyboard events
and iOS apps receive touch events as well a orientation events and memory warnings.

351

18 ofxiOS

Figure 18.4: Figure 1: OF on iPhone.

To handle these new events, new methods had to be defined inside ofxiOSApp which
the ofApp inherits from.� �
void touchDown(ofTouchEventArgs & touch);
void touchMoved(ofTouchEventArgs & touch);
void touchUp(ofTouchEventArgs & touch);
void touchDoubleTap(ofTouchEventArgs & touch);
void touchCancelled(ofTouchEventArgs & touch);� �
Touch events are passed into the ofApp through these methods. Each method receives
a ofTouchEventArgs object which contains all the information about the touch event,
such as the touch ID and the x and y position of the touch on the screen.� �
void lostFocus();
void gotFocus();� �
Focus events are passed into the ofApp when the application goes from active to in-
active state and vise versa. gotFocus() method tells the ofApp that the application
has becomes active, which happens when the application first launches. lostFocus()
method tells the ofApp that the application has become inactive which happens when
a phone call or SMS interrupts the app or when the user exits the app.� �
void gotMemoryWarning();� �
Each iOS application is allocated a limited amount of memory for it to run. When an
application exceeds the allocated amount, the operating systems lets the application
know by giving it a memory warning. Memory warnings are passed into the ofApp
via the gotMemoryWarning() method at which point the application needs to free up
some memory otherwise the operating system can terminate the application.� �
void deviceOrientationChanged(int newOrientation);� �

352

18.5 OF & UIKit

iOS dispatches orientation events when ever the device orientation changes. Orienta-
tion events are passed into the ofApp through deviceOrientationChanged()method.
It is then up to the user to handle these orientation changes as they see fit. iosOrien-
tationExample inside examples/ios/ folder demonstrates how the orientation events
can be used.

18.4.2 OpenGL ES and iOS

• Intro > lead to types

• iOS Support for ES 1.1

• iOS Support for ES 2.0

• iOS Support for ES 2.0 > Lead to Hardware

• Apple Devices Hardware Limitations (A7 VS PowerVR)

– PowerVR
– A7 > Lead to Device Specific Limitions

• Device Specific Texture Limitations

– Ref Apple Docs https://developer.apple.com/library/ios/documentation/DeviceInformation/Reference/iOSDeviceCompatibility/OpenGLESPlatforms/OpenGLESPlatforms.html

• Conclusion > Lead to Shaders and Crossovers.

• Shaders using ES2. Crossover between web ES2 shaders and iOS ES2 shaders.
• https://www.khronos.org/webgl/wiki/WebGL_and_OpenGL_Differences

18.5 OF & UIKit

• Adding UIViews to an OF app, above and below the OF glView.
• openFrameworks as part of a larger app, several openFrameworks apps in one
iOS app

• addons for ofxiOS
• dispatching on main queue from OF to UIKIT using blocks.

http://www.creativeapplications.net/iphone/integrating-native-uikit-to-your-existing-
openframeworks-ios-project/

353

18 ofxiOS

18.6 Media Playback and Capture

A large chunk of ofxiOS support is media playback and capture. ofxiOS has good sup-
port for video playback, sound playback, camera capature and sound input. All Obj-C
code that makes these features possible is wrapped and abstracted so a regular OF
user can continue using the OF API the same way across all supported platforms.

For example, lets say you have a very simple ofApp that plays a video. To achieve this
you would use the ofVideoPlayer class, create a object instance of the class, call the
loadMovie() method to load the video file and then call the play() method to begin
playback of the video. Now to do this across desktop OF apps or iOS OF apps, the
code is exactly the same. This is because we are using the ofVideoPlayer API which
is common across all supported OF platforms. Although the thing to know here is that
even though the code works the same way across the different platforms, the actual
code used to play a video on OSX and iOS (for example) is very different.

18.6.1 ofxiOSVideoPlayer

ofxiOSVideoPlayer is the video player class used for video playback inside ofxiOS.
When you’re using ofVideoPlayer inside a iOS OF project, you are actually using
ofxiOSVideoPlayer. OF automatically selects the correct video player class to use
depending on the platform you are using.

A iOS example that demonstrates the use of the video player on iOS can be found in
the folder, examples/ios/moviePlayerExample

When looking inside the ofApp header file you will notice that we are using the
ofxiOSVideoPlayer class instead the generic ofVideoPlayer class. You can use
both but it’s probably better to use the ofxiOSVideoPlayer class instead. The reason
being is that ofxiOSVideoPlayer has a few extra methods which are specific to iOS,
which you may or may not want to use, but it’s always good to have that option.

Let go through some of the basic functionality.

To load and play a video it’s exactly the same as using the ofVideoPlayer.� �
void ofApp::setup() {

video.loadMovie("hands.m4v");
video.play();

}� �
On every single frame we need to update the video player.� �
void ofApp::update(){

video.update();
}� �
354

18.6 Media Playback and Capture

Figure 18.5: Figure 1: OF on iPhone.

355

18 ofxiOS

And to draw the video to screen, we need to first get a reference to the video texture
and call draw on the texture object.

� �
void ofApp::draw(){

video.getTexture()->draw(0, 0);
}� �

Now for those extra iOS specific methods.

If you poke around inside ofxiOSVideoPlayer you will see a method called
getAVFoundationVideoPlayer() which is responsible for returning a reference
of the underlaying AVFoundationVideoPlayer. AVFoundationVideoPlayer is the
Obj-C implementation for the iOS video player and is the class that sits below
ofxiOSVideoPlayer and pretty much does all the work. Now, some reasons you may
want have accesss to the AVFoundationVideoPlayer is that you want to work directly
with the Obj-C code to get the most out of iOS video player features or you want to
display the video inside a UIView instead of rendering it to OpenGL.

Here we are getting a pointer reference to the AVFoundationVideoPlayer which also
happens to extends a UIView. This means we can add the video player to a UIView
hiarchy and display the video natively.

� �
AVFoundationVideoPlayer * avVideoPlayer;
avVideoPlayer = (AVFoundationVideoPlayer

*)video.getAVFoundationVideoPlayer();
[avVideoPlayer setVideoPosition:CGPointMake(0, 240)];
[ofxiOSGetGLParentView() insertSubview:avVideoPlayer.playerView

belowSubview:controls.view];� �

356

18.7 Life Hacks

Figure 18.6: Figure 1: OF on iPhone.

18.6.2 ofxiOSVideoGrabber

18.6.3 ofxiOSSoundPlayer and ofxOpenALSoundPlayer

18.6.4 ofxiOSSoundStream

18.7 Life Hacks

• ofxiOS utils, ofxiOSExtras, ofxiOSImagePicker, ofxiOSMapKit etc.

18.8 App Store

• App distribution, preparing your OF app for the app store.

357

18 ofxiOS

• examples of OF iOS apps already in the app store.

18.9 Case Studies

https://itunes.apple.com/au/app/john-lennon-the-bermuda-tapes/id731652276?mt=8

https://itunes.apple.com/au/app/sadly-by-your-side/id687252928?mt=8

https://itunes.apple.com/us/app/swipin-safari/id635434195?mt=8

https://itunes.apple.com/au/app/tunetrace/id638180873?mt=8

https://itunes.apple.com/au/app/hana/id556557031?mt=8

https://itunes.apple.com/gb/app/starry-night-interactive-animation/id511943282

https://itunes.apple.com/au/app/snake-the-planet!/id528414021?mt=8

https://itunes.apple.com/au/app/horizons/id391748891?mt=8

https://itunes.apple.com/us/app/spelltower/id476500832?mt=8 # C++ 11

the following needs readability improvements (flow of text)… i’ll take another pass at
it soon

18.10 Blah blah

C++ is a pretty old language, it’s been around since XXX, and perhaps because of that
(but certainly for many other reasons), it is often seen as archaic, obtuse, or perhaps
just plain rubbish by today’s standards. Contrary to that, many people believe that it is
still offers the best balance of performance and clarity on the coding high street, and (in
part thanks to the success of Unix and its mates) has an incredibly strong ecosystem of
3rd party libraries, device support and general acceptance, even up to the point where
current shader languages and CUDA use C++ as their language of choice.

Some more modern languages (such as JavaScript and C#) make programs which run
in a very different way to C/C++. They have a ‘virtual machine’, which is a very different
type of computer than the one which crunches electronic signals on a circuit board.
The virtual machine receives and processes program instructions like a real machine,
but allows for all sorts of ideas which don’t directly translate to silicon electronics,
such as dynamic typing and reflection. The virtual machine abstracts the constraints
of the processor away from the thinking of the programmer.

C/C++ does not have a virtual machine, which (for the time being) often gives it a
performance edge over these newer languages. It is quite strict in that ultimately the C
code itself (somewhere down the chain) translates 1:1 with processor instructions, the

358

18.11 auto

design of the language is inflexible in this way, but clinging to this is the achievement
of C++, that code can be both understood naturally by a human, and clearly translate
to machine code.
In this chapter we’ll look at some of the new patterns in the C++ language introduced
in C++11, which retain this promise whilst offering new ways of writing code.

18.11 auto

Perhaps the most used, and simplest new pattern in C++11 is auto. You’ll love it. And
probably won’t remember life without it after a day or 2. Consider the following…� �
ofRectangle myRectangle = ofGetCurrentViewport();
ofVec2f rectangleCenter = myRectangle.getCenter();
float rectangleCenterX = rectangleCenter.x;� �
In this code block, we are declaring 3 variables: * myRectangle * rectangleCenter *
rectangleCenterX
On each line of code we are:

1. Getting a variable on the right hand side. which is of a certain type (ofRectangle,
ofVec2f, float respectively)

2. Declaring a new variable which is explicitly typed to match the value on the right
3. Assigning the value to the variable

What we may notice, is that the type of data on the right and left side of the = is the
same. Since C++ is strictly typed (e.g. a function which returns a float will always
return a float no matter what), it is impossible for the value on the right hand side to
ever be anything different. The compiler knows what type of value the right hand will
give, e.g. it knows that on line 1 that on the right hand side of the = is an ofRectangle.
So perhaps if we were to write something like:� �
auto myRectangle = ofGetCurrentViewport();
auto rectangleCenter = myRectangle.getCenter();
auto rectangleCenterX = rectangleCenter.x;� �
Then the compiler can do some of the coding for us. In fact, thanks to auto, we can do
this now. This code block compiles to exactly the same result as the first code block
did. The compiler notices what’s on the right hand side and substitutes in the correct
type wherever it sees auto.

18.11.0.1 How this helps

Well obviously auto’s going to save you keystrokes. Imagine the following:

359

18 ofxiOS

� �
vector<shared_ptr<ofThread> > myVectorOfThreads;� �� �
// the old way
vector<shared_ptr<ofThread>>::iterator firstThreadIterator =

this->myVectorOfThreads.begin();

// the new way
auto firstThreadIterator = this->myVectorOfThreads.begin();� �
Now this makes the code more readable (by decent humans), but also you could take
advantage of auto in other ways, for example you could make changes things in the h
file, and the cpp file code would automatically correct itself. For example in the h you
might change the vector to a list, or change shared_ptr<ofThread> to ofThread
*. These changes would perpetuate automatically to wherever an auto is listening out
in the code. Nifty huh?

18.11.1 Watch out for this

18.11.1.1 auto is not a new type

Note that the following doesn’t work:� �
auto myRectangle = ofGetCurrentViewport();
myRectangle = "look␣mum!␣i'm␣a␣string!!"; // compiler error!� �
Remember that auto isn’t a type itself, it’s not a magic container that can take any kind
of thing (such as var in C# or another dynamic typed language), it is simply a keyword
which gets substituted at compile time, you can imagine that the compiler just writes
in for you whatever makes sense on that line where it is. In this case, the first line
makes sure that myRectangle is an ofRectangle, and you can’t assign a string to an
ofRectangle.

18.11.1.2 You can’t use auto in function arguments

Since the automust be implicitly defined by the line of code where it is used, and that
this decision is made at compile time, it can not be a function argument, let’s see what
that means..

Imagine that the following was valid: (NOTE : it isn’t!)� �
float multiplyBy2(auto number) {

return number * 2;
}

360

18.11 auto

int firstNumber = 1;
float secondNumber = 2.0f;

cout << multiplyBy2(firstNumber) << endl;
cout << multiplyBy2(secondNumber) << endl;� �
Now if this code were valid, then the first time the function is called, the auto would
mean int, and the second time it would mean float. Therefore saying that the text
auto is simply substituted with an explicit type where it is written doesn’t make sense.
So basically you can’t use auto in function arguments (you might want to look into
template instead, which would automatically generate 2 pieces of code for the 2 dif-
ferent types).

18.11.1.3 You can’t use auto as a function return type

I’m not sure why, you just can’t. It kinda makes sense that you should be able to, but
you just can’t, move along :).

18.11.2 const and references

Let’s do a const auto:� �
ofRectangle rectangle = ofGetCurrentViewport();
//is the same as
auto rectangle = ofGetCurrentViewport();

//and

const ofRectangle rectangle = ofGetCurrentViewport();
//is the same as
const auto rectangle = ofGetCurrentViewport();� �
Next look at auto & for when we want reference types.� �
float x = rectangle.x;
//is the same as
auto x = rectangle.x;

//and

float & x = rectangle.x;
//is the same as
auto & x = rectangle.x;� �

361

18 ofxiOS

18.11.3 Summary

• Save keystrokes by using auto in variable declarations
• auto takes the type of the right hand side of the = assignment, and replaces the
text auto with that type at compile time.

• auto is not a magic container which can carry any type of data, it simply gets
replaced at compile time by whatever is implied in the code

• You can’t use auto in function arguments, return types and a few other places.
• Use const auto for a const type, and auto & for a reference type

18.12 for (thing : things)

Consider the following common pattern:� �
vector<ofPixels> mySelfies;
/*
take some sexy snaps
*/

//oh dear, my photos are all in portrait
for(int i=0; i<mySelfies.size(); i++) {

//rotate them from landscape to portrait
mySelfies[i].rotate90(1);

}

vector<ofxSnapChat::Friend> myFriends = snapChatClient.getFriends();

//now let's send them to all my friends
for(int i=0; i<myFriends.size(); i++) {

if (myFriends[i].isHot()) {
for(int i=0; i<mySelfies.size(); i++) {

myFriends[i].sendImage(mySelfies[i]);
}

}
}� �
Well we’re forever doing things like for(int i=0; i<mySelfies.size(); i++){, so
let’s see if we can find a neater way of doing this with for thing in things which in
C++11 we can write as for (thing : things)…� �
vector<ofPixels> mySelfies;
/*
take some sexy snaps
*/

362

18.13 override

//oh dear, my photos are all in portrait
for(auto & mySelfie : mySelfies) {

//rotate them from landscape to portrait
mySelfie.rotate90(1); // (1)

}

auto myFriends = snapChatClient.getFriends();

//now let's send them to all my friends
for(auto & myFriend : myFriend) {

if (myFriend.isHot()) {
for(auto & mySelfie : mySelfies) {

myFriend.sendImage(mySelfie); // (2)
}

}
}� �
Notice that for(thing : things) gels so well with auto. Also notice that I’m using
auto & since:

• At (1) I want to be able to change the contents of the vector, so I need a reference
to the vector item rather than a copy of it.

• At (2), it makes more sense to use a reference rather than a copy because it’s
computationally cheaper, and means I don’t have to allocate new instances of
ofxSnapChat::Friend (which I presume is quite a complex object, since it can
do things like send images over the internet, and understand societal disposi-
tions of what it means to be attractive).

18.12.1 Summary

• Use for(auto thing : vectorOfThings)
• This works with all the STL containers (vector, map, list, deque, set, etc) and in
some more purpose built containers (e.g. ofxGrayCode::DataSet)

• Often you’ll want to do for(auto & thing : vectorOfThings) to use a refer-
ence rather than a copy

18.13 override

override saves you time not by reducing the amount of typing you do, but by reducing
the amount of head-scratching you might do when dealing with virtual functions.
Imagine the following:� �
class BuildingProjectionMapper {

363

18 ofxiOS

public:
//...

virtual void mapTheGreekColumns();
//...
};

class AutoBuildingProjectionMapper : public BuildingProjectionMapper
{

public:
void mapTheGreekColums(); // woops, I spelt column incorrectly

};� �
Now if I implement AutoBuildingProjectionMapper::mapTheGreekColums, it may
never get called, and I may be wondering why my function calls are all being handled
by the base class. The problem is that the compiler never told me that the function
that I was trying to override didn’t exist. Here comes override to the rescue.� �
class AutoBuildingProjectionMapper : public BuildingProjectionMapper

{
public:

void mapTheGreekColums() override;
};� �
This tells the compiler that I’m intending to override a virtual function. In this case,
the compiler will tell me that no virtual function called mapTheGreekColums exists,
and that thereforemy override is faulty. So following the compiler’s complaint I can go
in and fix the spelling mistake. Then I can get on with making my Projection Mappening
on the town library facade.

18.13.1 Summary

• Use the keyword override at the end of function definitions in a derived class’
h file when you are intending to override a virtual function in the base class

• The compiler will warn you if your override is invalid, which might just save you
a lot of time hunting for errors

18.14 Lambda functions

18.14.1 Worker threads

18.14.2 Callbacks

18.14.3 Summary

364

19 Case Study : Line Segments Space

by Mimi Son and Elliot Woods (Kimchi and Chips)¹

Figure 19.1: Line Segments Space

19.1 Foreward

Line Segments Space is an artwork created by studio Kimchi and Chips² (Mimi Son, Elliot
Woods), and is the third installation within a series of works titled ‘Digital Emulsion’,
preceded by Lit Tree (2011) and Assembly (2012). The pricipal technician for this project
is me, Elliot, the voice of this chapter.

This chapter will discuss some of the technical details of the project to varying levels of
detail. Before continuing, I hope that you will first take a little time to view the work in
a non-technical context and watch the video on our website at http://kimchiandchips.
com/#LSS.

The work contains a number of technical solutions, the principal one being an imple-
mentation of the Digital Emulsion technique. Others include a custom CAD application,
generative ‘brushes’ for volumetric content, optical layout of the room and equipment,

¹http://www.kimchiandchips.com/
²http://kimchiandchips.com

365

http://kimchiandchips.com/#LSS
http://kimchiandchips.com/#LSS
http://www.kimchiandchips.com/
http://kimchiandchips.com

19 Case Study : Line Segments Space

sound control and spatialisation, and calibration by a team of client computers. This
chapter touches on a few of these challenges.

==perhaps this should be a list of what is actually in the chapter== [BD: The chapter is
short enough that I don’t think that this is needed]

19.2 Artist statement

An architectural web of threads spans a gallery space. It hangs abstract and undefined,
a set of thin positive elements segmenting the dark negative space between. Dynamic
imaginary forms are articulated into physical volume by the material of this thread,
and the semi-material of the light. The visual gravity of the filaments occupying the
space between.

A 2D canvas is reduced from a surface piece into a line segment, but then constructed
into another dimension, a volume. Light creates contrast and order on the lines to
articulate digital matter. Digital forms inhabit the interconnected boundaries of space,
moulding visual mass,

The artists reference Picasso’s light painting, and Reticuláreas of Gego who’s work of-
fers a contemplation of the material and immaterial, time and space, origin and en-
counter and art and technology.

Kimchi and Chips create technology which paints into different dimensions, bringing
new canvases and expanding the possibilities for artists to articulate form. These tech-
nologies become a corpus of code, offered without restriction on the internet. Their
code is adopted by other artists and corporations, spreading values and ideas implicit
with the artists’ work into shared cultural idea space. Line Segments Space lives both
as a dynamic gallery object, and as an encapsulation of the techniques as new com-
puter code and tools on the internet.

[BD: This artist statement may be better at the top. It feels a bit weird to go from
talking about thework in the forward, to a brief technical overview, and then an artist
statement.]

19.3 Digital Emulsion

Digital Emulsion (or Re-projection Scanning) is a technique which combines 3D scan-
ning with projection mapping in order to create new canvases for visual expression.
Line Segments Space employs Digital Emulsion to accurately aim light from projectors
onto individual threads, whilst also determining the 3D geometry of the web.

366

19.3 Digital Emulsion

The technique combines the use of a video projector and an imaging camera (e.g. DSLR
or machine vision camera) to augment a physical object. The steps for this are gener-
ally:

1. Calibrate the camera and projector (e.g. using OpenCV)
2. Perform a Structured Light scan of a scene (e.g. using ofxGraycode³)
3. Triangulate the 3D location of every projector pixel in the scene (e.g. using ofxTri-

angulate⁴)
4. Render a graphical response to the scene using the triangulation data
5. Project this response back onto the scene using the structured light data to per-

form a pixel-precise mapping between the projector and the scene.

19.3.1 Structured Light

Structured Light refers to a set of techniques which couple projectors with sensors to
take visual and spatial readings of the physical world.

A very simple structured light technique is to project a thin white line onto a scene
and to take a photo of it. Within the photo, we can see that the line kinks and bends
within the cameras image as it passes over 3D features. Using some trigonometry we
could perhaps calculate something about the 3D shape of the object based on the
displacement of this line.

(insert photo of line projected onto object e.g. http://www.david-3d.com/gfx/slides/4.jpg)
[BD: This photo illustrates Structered Light well! I would use it.]

If we took many images (e.g. a video) whilst moving the line across the whole scene,
then we could recover a lot of 3D information about the scene, and make a mesh
(e.g. ofMesh).

Generally for Digital Emulsion, we use a structured light technique called Graycode
Structured Light. If you’re interested in learning more, I suggest checking out either
ofxGraycode⁵ or David laser scanner⁶ (a free to download standalone scanning app
which employs structured light).

The specific advantage of using Graycode (rather than 3-phase) structured light for
Digital Emulsion projects, is that it gives you accurate information of the location of
the projector’s pixels rather than of the camera’s pixels. Folowing the Graycode scan,
we can now consider that our projector’s pixels are sensing the scene but are still also
controllable as visible pixels, that they in fact sensor-pixels, also known as ‘sexels’.

³https://github.com/elliotwoods/ofxGraycode
⁴https://github.com/elliotwoods/ofxTriangulate
⁵http://github.com/elliotwoods/ofxGraycode
⁶http://www.david-3d.com/

367

https://github.com/elliotwoods/ofxGraycode
https://github.com/elliotwoods/ofxTriangulate
http://github.com/elliotwoods/ofxGraycode
http://www.david-3d.com/

19 Case Study : Line Segments Space

19.4 Technical solution

19.4.1 Constraints

The first presentation of Line Segments Space was at Seoul Art Space Gumcheon be-
tween September and October 2013, the exhibition had the following constraints:

• 1 week installation time
• 4 week run time
• Temporary room built by gallery
• Limited production budget from gallery for material and equipment costs, other
costs covered by artists

19.4.2 System overview

Figure 19.2: System Diagram

==please redraw==

19.4.2.1 Software frameworks

Generally I split processes into 2 categories:

368

19.5 Design time applications

[BD: Here, the difference between online + offline tasks is slightly muddled. Perhaps
it is because of the associations with those words. Online + offline is slightly confus-
ing. Perhaps outlining your definition for them here in more depth would be helpful.]

Online : * The task is performed with the installation hardware * Other people are likely
to be involved in the process * It’s best if software edits can be made quickly and freely
* Edits are made whilst continuously observing the output (like a pilot manouvering a
plane)

An example of an online process might be the final runtime of the installation.

Offline : * The task can be performed away from the installation hardware. * Some
offline tasks may require intense computing time * Often these tasks require more
concentration * Edits are made and the results are viewed asynchronously (like a chef
tasting the soup)

An example of an offline process would be processing the scan data.

My personal preference is often to use openFrameworks for developing offline tasks,
and to use another toolkit called VVVV⁷ for developing online processes.

19.4.2.2 Hardware

Component Reasoning

PC, Windows PC’s are selected for flexible graphics options and for VVVV compatability
GeForce GTX 680 Moderately strong, so good at geavy shader pipelines such as used in this projectIt has 4 video outs
TripleHead2Go Keeping all output in a single context (i.e, 1 ‘Display’ in Windows) reduces rendering overhead and increases framerate. GeForce cards do not have an option for teaming exactly 2 outputs together into 1 context. The TripHead2Go was used to split 1 output (1 context) to 2 projectors. Alternatively, I would recommend to use Quadro Mosaic or ATI EyeFinity to team the 2 outputs
2 portrait monitors Extra screenspace makes working environments more productive, and a significant portion of development is performed on site with the final piece. I often use portrait for a few reasons, but in this case largely because it’s easier to look around the screens at the installation.
Mac Mini, OSX The second computer is for sound design and uses an audio interface which requires Firewire and Ableton runs equally well on OSX and Windows for our purposes.

19.5 Design time applications

During the early development stages of the project, we create some applications which
are not intended to feed directly into the final work, but exist to facilitate the sketching
process of developing the concept and design of the work. These help us to identify
possible unexpected directions we may go in, to understand how much effort may be
required to realise the work both physically and technically, and to understand the
material requirements (e.g. how much rope do we need to buy).

Some examples of these ‘design time applications’ are: * A simple Digital Emulsion

⁷http://vvvv.org/

369

http://vvvv.org/

19 Case Study : Line Segments Space

scanning app which worked with 2 projectors, a DSLR and After Effects. This was used
to develop the tone andmanner of the artwork by enabling semi-functional prototypes
to be built in the studio. * Several prototypes for calibrating the camera and projectors
* A bespoke CAD app for designing the physical web of strings

19.5.1 addLinesToRoom

Let’s talk about the CAD app a little more by discussing some of its features and how
they are implemented. The full source of this app is up at ==URL for source== and you
can download an OSX version at ==URL for build==. This app was written on a long
flight, then tweaked as and when it was used to add further features.

19.5.1.1 Laying down lines

ofxGrabCam

19.5.1.2 Shadows

Editing a 3D scene through a computer monitor is often confusing, especially when
we’re editing thin lines. We can’t naturally see the depth in the scene without con-
stantly moving the camera. Ideally we could see the scene from 2 views simultanaously,
enabling us to judge depth.

One simple way of seeing the scene from 2 ‘views’ is to draw shadows into the scene,
enabling us to judge depth in the scene much more easily.

Without shadows

370

19.5 Design time applications

With shadows

==suggest arranging these 2 images side by side==

There are a number of standard ways to render shadows in computer graphics, but I
chose a super-naive method due to the very simple nature of the scene. Essentially
every line is drawn twice, once as a normal 3D line, then again but with the y value
clamped to the floor of the room, and the colour set to a dark grey colour.� �
//---------
void Thread::draw(float edgeThickness, ofColor center, ofColor

border) const {
const ofVec3f start = this->s;
const ofVec3f end = this->s + this->t;

ofPushStyle();

ofSetLineWidth(edgeThickness);
ofSetColor(border);
ofLine(start, end);

ofSetLineWidth(1.0f);
ofSetColor(center.r, center.g, center.b);
ofLine(start, end);

ofPopStyle();
}

//---------
void Thread::drawShadow(float floorHeight) const {

ofVec3f start = this->s;
ofVec3f end = this->t + start;

//clamp the y value to the floor y value, so that the line
sticks to the floor

start.y = floorHeight;

371

19 Case Study : Line Segments Space

end.y = floorHeight;

ofPushStyle();

ofSetColor(20, 20, 20, 100);
ofLine(start, end);
ofPopStyle();

}� �
19.5.1.3 Shift to zoom

Often it’s necessary in an application to perform an action more accurately than can
be easily done with the normal mouse/trackpad and screen. In these scenarios, I
generally add a “hold [SHIFT] to zoom” mode, which performs an appropriate action to
assist the task at hand.

In this case, the [SHIFT] key makes the line wider, and simultaneously the renderer
presents a zoomed view in the corner of the screen.

19.5.1.4 Layers feature

Rebuilding gui objects

19.5.1.5 Final notes

The drawing tool tries to mirror the actual physical workflow

Unexpected outcomes (things we had been imagining differently from each other.
some layouts turned out to be nearly impossible to make

Apps you write should make you happy whenever you look at it, so make them a touch
pretty and use a little subtle colour.

372

20 Case Study: Choreographies for Humans
and Stars

Permanent interactive outdoor installation developed by Daily tous les jours¹ for Mon-
treal’s planetarium (2014).

Chapter by Eva Schindling² (with help from Pierre Thirion³)

Figure 20.1: “Choreographies for Humans and Stars” in action at the Montreal’s Rio Tinto
Alcan Planetarium (January 2014)

20.1 Project Overview

Choreographies for Humans and Stars⁴ is a permanent interactive outdoor installa-
tion hosted at Montreal’s Rio Tinto Alcan Planetarium. The interactive projection on
the building’s facade invites passers-by to a series of collective dance performances
inspired by the different mechanics of planets and stars.

Seven stones anchored into the ground delimit the dance area in front of the projec-
tion. A series of instructions on the screen guide participants through a set of chore-
ographies that combine dance and astronomy. The participants use their bodies to
understand celestial dynamics like eclipses, forces of attraction and combustion. A

¹http://dailytouslesjours.com/
²http://evsc.net
³http://www.21h42.fr
⁴http://www.dailytouslesjours.com/project/choregraphies-pour-des-humains-et-des-etoiles/

373

http://dailytouslesjours.com/
http://evsc.net
http://www.21h42.fr
http://www.dailytouslesjours.com/project/choregraphies-pour-des-humains-et-des-etoiles/

20 Case Study: Choreographies for Humans and Stars

camera system tracks the movements across the dance stage and controls the images
and animations on the projection. The original image material has been produced
through workshops with local kids.

Figure 20.2: The interactive projection invites passers-by to a series of collective dance
performances

This chapter documents the various stages of Choreographies for Humans and Stars in
chronological order. It talks about project logistics, prototyping processes and techno-
logical choices, before diving into some OF implementation details towards the end.

20.1.1 Call, Competition and Commission

The project started out as an official call by the Public Art Bureau of the City of
Montreal⁵, which is in charge of commissioning and maintaning permanent artworks
around the city. For the opening of the new planetarium they wanted to commission
Montreal’s very first interactive and permanent artwork.

The official brief asked for an interactive digital installation utilizing the building facade
for projection and simultaneously offering an intervention on the plaza in front of the
venue’s entrance. The artist needed to ensure that the work lasts a minimum of 3 years
in the public space, operating year-round. Sound was excluded, and the work should
produce no light pollution. The budget for realizing the project was set at $262.000
CAD (before taxes).

The selection process took ~9 months and included three phases:

1. Request for qualifications (RFQ): jury select 6 artists based on portfolio
⁵http://ville.montreal.qc.ca/artpublic

374

http://ville.montreal.qc.ca/artpublic

20.1 Project Overview

2. Request for proposals (RFP): jury select 3 finalists based on preliminary artistic
concept

3. Final concept: jury selects winner based on complete project proposal (photo
montage, video simulation, detailed budget, technical details, production calen-
dar, supplier and collaborator list)

After passing all phases we were officially commissioned by the Public Art Bureau in
June 2012.

20.1.2 Timeline

From first brainstorms to final hand-over the mammoth project took an impressive 28
months to complete. That’s 10 months longer than the official brief planned for. When
you work with that many players (the city, the planetarium, collaborators..) your first
and second attempt at a project timeline is bound to fail. A lot of the delay was due
to elongated contract negotations with the city, as neither we nor they had negotiated
the maintenance of permanent digital artworks before (not your typical bronze statue).
Our more pragmatic goal was to get it all done by November 2013, with the main in-
tention of avoiding all the snow and coldness that comes along with Montreal’s winter
season. Naturally we slipped right past that goal, and had our big opening amidst lots
of snow mid January, with temperatures ranging between -15 to -25.

Figure 20.3: The project timeline spanning impressive 28 months

20.1.3 Everyone involved

Credit lists quickly grow long. The internal DTLJ team includes Mouna andMelissa being
the main artists with the vision, Eva handling software, Pierre being heavily involved
with visual identity and video production, Michael handling the LEDs in the outdoor fur-
niture. The list of external collaborators include a producer (Nicolas), a choreographer
(Dana), a technical director (Frederick), a software engineer (Emmanuel), a film anima-
tor (Patrick), an industrial design studio (Dikini⁶), a graphic designer (Studio Atelier), a
concrete workshop (M3Beton⁷), engineers, a camera man, …
⁶http://www.studiodikini.com/
⁷http://m3beton.ca/

375

http://www.studiodikini.com/
http://m3beton.ca/

20 Case Study: Choreographies for Humans and Stars

20.2 Ideation and Prototyping

Choreographies for Humans and Stars is inspired by space as the great unknown. We
felt that our role could be to bring a physical experience that would help the planetar-
ium visitors to not only understand but also feel what space is about. One of our early
inspirations was the opening scene of the Béla Tarr’s movie “Werckmeister Harmonies”,
where a party ends in dancing a solar system waltz with the Earth and the Moon turning
around an eclipsing Sun.

Very early in the process we started collaborating with a choreographer and together
we explored how participants could use their bodies in ways that mimic celestial dy-
namics. In a choreography-driven narrative each scene would represent a recognizable
space phenomena, instigating a journey from spinning like revolving planets, to lining
up to cause an eclipse.

Figure 20.4: The celestial mechanics and their corresponding body movements

The individual choreographies would be communicated with text instructions and
should allow participants to dance within a group, yet maintain enough freedom to
indulge in personal interpretations.

20.2.1 Challenges in the Interaction design

Once the overall structure and narrative had been decided on we moved into the it-
erative process of prototyping, testing and finetuning the interaction design. We went
from paper drawings to full scale prototypes and had several test sessions with users
of all ages.

One of the main challenges of the project was to find a balance between providing
interesting reactive visuals while also giving people the freedom to perform chore-
ographies without having their eyes constantly stuck on the screen. Being unable to
use sound, all interaction feedback needed to be visual. But in order to encourage true
freedom of movement, the colorful images of explosions and shooting stars needed
to be tuned down in their reactiveness to provide more of a backdrop instead of the
main attraction of the piece.

376

20.2 Ideation and Prototyping

Similar challenging was the task to communicate the instructions to the participants.
While some actions could be phrased as one-worders - “FREEZE!” - others were more
elaborate and cryptic - “Walk with someone, keep the same distance between you (No
hands!)”. Creating the piece for a bilingual audience also highlighted the possible
interpretive differences between English and French instructions. Having test sessions
with uninitiated users was important to adjust the exact wording of instructions, and
also to refine the timing of the individual scenes. (The factor that eventually ended up
influencing the timing the most, was January’s outside temperature).

Figure 20.5: The seven scenes representing celestial movements and the instructions
animating participants to perform

20.2.2 Outlining the dance zone

The projection being intangible, it was important to give the project a physical presence
on the ground. Some sort of tangible intervention that would serve as interface for
people to interact, and further represent the project during daylight hours.

At the beginning we imagined a series of stones and platforms arranged to form ce-
lestial pathways and encouraged hopping from stone to stone. Yet this would have
introduced too many physical obstacles (tripping over, slipping) and severely limited
the free movements and interactions in the space. Over the course of prototyping the
importance of the physical presence shifted from being an interface to providing a
delimiting perimeter around the active dance zone. After going through many design
proposals (a stage, a ring, a ballet pole!) we landed on 7 inch-high concrete stones
positioned in a circular formation. A single white LED on each stone enhanced their

377

20 Case Study: Choreographies for Humans and Stars

presence. Installing the underground cabling for those 7 LEDs proved a big challenge
and required the $10k rental of a ground-unfreezing device.

Figure 20.6: The circular dance zone in front of the projection, outlined by 7 concrete
stones

20.2.3 Producing video content

Since the project would be permanently installed, we involved locals in the making of
these images, aiming to create a sense of ownership within the community that will
be living next to the project for many years to come. The image and video content was
created using simple analog animation techniques in a series of workshops⁸ with local
kids aged 7 to 12.

20.3 Finding the Technical Solutions

The technical challenges of creating a public artwork definitely multiply when the
project is meant to be permanent. Suddenly you can’t just hide cables under cable-
trays or choose the perfect location for your camera. Your limits are set by year-round
weather conditions, architectural building codes and the intended path of the snow-
plow.

20.3.0.1 Put the Projector with the animals

The projection surface on the planetarium is 20 meter high and covered with shiny
tiles. The shininess of these tiles was first worrisome, but an early projection test

⁸http://www.dailytouslesjours.com/to-community-and-beyond

378

http://www.dailytouslesjours.com/to-community-and-beyond

20.3 Finding the Technical Solutions

settled any doubts of projection quality. To cover a large area of the building surface,
we required a high-lumen projector (Barco HDX-W20⁹) which naturally ate almost half
the budget. To save further costs - and for weather-protection and easy-access reasons
- the projector was placed in the neighbouring building: the Montreal biodome. We had
to build a wooden platform for the projector and cut a glass replacement window out
of the slightly tinted facade of the biodome. A simple $15 heater now ensures that
that window is kept clear of ice and condensation. Additionally we negotiated with
the landscape architects the trimming of any trees that were likely to grow into our
projection cone over the next 3 years.

Working inside the biodome turned out to be quite entertaining: my access route to
our equipment led directly by the penguin compound, and work sessions were accom-
panied by a constant backdrop of bird chirping.

Figure 20.7: The camera is mounted at the planetarium, while the projector is installed
in the neighboring biodome

20.3.0.2 Camera style and placement

In an ideal camera tracking scenario you have a controlled indoor environment that
provides a clean top-down camera view and lets you create the lighting and background
design of your choice. Our site at the planetarium is outdoors and therefore subject to
all possible weather conditions. The foreground-background contrast can invert based

⁹http://www.barco.com/en/Products-Solutions/Projectors/Large-venue-projectors/
20000-lumens-WUXGA-3-chip-DLP-projector-with-light-on-demand-option.aspx

379

http://www.barco.com/en/Products-Solutions/Projectors/Large-venue-projectors/20000-lumens-WUXGA-3-chip-DLP-projector-with-light-on-demand-option.aspx
http://www.barco.com/en/Products-Solutions/Projectors/Large-venue-projectors/20000-lumens-WUXGA-3-chip-DLP-projector-with-light-on-demand-option.aspx

20 Case Study: Choreographies for Humans and Stars

on if snow covers the dark pavement or not. The general lighting conditions are poor,
but the area can temporarily get lit up by the headlights of passing cars.
When first brainstorming technical solutions Kinects were quickly excluded due to a
distance of at least 20 meters between dance stage and any possible camera location.
More viable options included thermal imaging cameras ($$ and low-res), laser range
finders ($$ and limited to one dimension), stereoscopic 3d cameras (too dark environ-
ment, also too large distance), and cameras placed at 2 different angles to allow for
dynamic mapping of two perspectives into one (double the fun/noise).
Finally we settled on going with one single camera (Basler Scout scA1600-28gm)¹⁰, with
a high sensitivity lens (Fuji HF12.5SA-1)¹¹ for low-light situations and a tracking solution
that could convert the 2d information into 3 dimensions. Strict architectural codes
prohibited us from placing the camera on top or along the surface of the planetarium.
After long negotiations we were limited to placing the camera at a quite low angle
slightly to the left of the projection site. Surveillance style, we packed the camera into
an ugly weatherproof housing, together with a power supply, a heater and a fan system.

20.3.0.3 Network setup and negotiations

After calculating our camera’s bandwidth requirements (resolution 800x600px * fram-
erate 28fps * color depth 8bit * raw compression = 13 MB/sec) we discovered that
the local network wouldn’t allow us to send the camera data directly to the projector
site. We had to place one computer (Intel Core i5 3570K 3.40G/6M/S1155 with 8GB ram,
Ubuntu 12.04 LTS) in close proximity to the camera and another computer (Intel Core i7
3770K 3.40G/8M/S1155 with 16GB ram and an Asus GTX680 graphics card, Ubuntu 12.04
LTS) next to the projector. The two sites were only a 3-4 minute footwalk apart, but re-
quired keycards and the occasional security guard to open locked doors. In hindsight
we would have preferred to stick to the original plan of installing our own fiber optics
link to place all computer equipment in the same location.
The network being part of the city network, was heavily controlled, subject to 15min
timeout internet access. A couple of request forms later we had a LAN connection
between our two computers. VPN access for remote maintenance and remote updates
took about 2-3 months, and we are still in negotiation to get SSH access. (Cities protect
their networks).

20.3.1 Choice of tracking software

For the tracking software we found a collaborator in Emmanuel Durand, part of the
research lab at Society for Arts and Technologies¹². Emmanuel had developed blob-
¹⁰http://www.baslerweb.com/products/scout.html?model=130
¹¹https://www.fujifilmusa.com/products/optical_devices/machine-vision/2-3-5/hf125sa-1/
¹²http://www.sat.qc.ca/

380

http://www.baslerweb.com/products/scout.html?model=130
https://www.fujifilmusa.com/products/optical_devices/machine-vision/2-3-5/hf125sa-1/
http://www.sat.qc.ca/

20.3 Finding the Technical Solutions

Figure 20.8: The quite simple technical system diagram, the only obstacle was the city-
run LAN network

server¹³ - a opencv based software to implement various realtime detection algorithms
- and was looking for first test projects. For the project he further developed and
adapted blobserver to our needs. Blobserver is designed to take in multiple camera or
video sources, detect entities and then report its findings via OSC. Live configuration
of blobserver can be done through OSC as well, which allows for easy integration with
any OSC-friendly software.

20.3.1.1 Method of Tracking

To track participants in our dance zone we used blobserver’s HOG detector (histogram
of oriented gradients¹⁴) which learns from a database of human shapes to detect hu-
man outlines. The HOG detection is processing optimized by limiting its areas of inter-
est to areas with recent movements, detected by background subtraction.

First tracking tests were done based on publicly available databases of human shapes
[link?], but to get better results we created our own image database. We trained the
system on images taken with our camera on site, providing the specific camera angle
and the same specific background. Future project updates will include further training
of the tracking model by including images showing people and environment in their
summer-attire.

20.3.1.2 Tracking challenges

The tracking algorithm performs great when dealing with ideal-case scenarios: maxi-
mum 3 people, moving at a distance from each other, their silhouettes standing out
with high contrast from the background. But naturally, in a public setting without any

¹³https://github.com/paperManu/blobserver
¹⁴http://en.wikipedia.org/wiki/Histogram_of_oriented_gradients

381

https://github.com/paperManu/blobserver
http://en.wikipedia.org/wiki/Histogram_of_oriented_gradients

20 Case Study: Choreographies for Humans and Stars

Figure 20.9: Tracking of participants worked extremely well in the high-contrast winter
landscape

sort of supervision you can’t control how the audience uses your artwork. As soon
as too many people enter the dance zone at once, the system can get confused by
overlapping shapes. Similarly, small children, or clothes in the same brightness as
the background can cause the detection algorithm to sporadically fail. Configuring the
system to forgive those mistakes and let it pretend it still detects those participants,
also widens the door for unintentional noise (fake positives).

That balance between detection precision and detection forgiveness and the fact that
we deal with a fuzzy system in an uncontrolled environment, took a while to settle in
(Side note: this is our first camera tracking project). During early on-site tests we’d
settle on tracking settings that performed well, only to come back the next day to a
different weather scenario and discover that the same settings didn’t apply anymore.

After learning this the hard way, we understood to lower our expectations and also
figured out ways to make use of the limitations of the system. Certain instructions ask
participants to change into untypical shapes (“Hop from one spot to the other”, “Drop
to the ground”). Instead of training the system on the shapes of people hopping or
lying on the ground, we’d use the fact that the detection system lost them, in order to
trigger visual reactions.

Similarly we’d detect people spinning - “Take someone’s hand, spin and lean out as
far as possible” - by counting how many times the system loses and re-detects their
shapes. As we’d only look for one specific choreography in each scene, we were free
to interpret the incoming tracking results as needed.

20.3.2 Choice of visualization software

This project provided the perfect excuse to jump back into openFrameworks. Previous
company projects relying on computationmostly lived in the realm ofmusic (max/MSP)
or the web (python, node.js). On the rare occasion that visuals were involved, a too
short timeline asked for a quick solution (processing). And in general we fall victim
to the mistake of over-polluting the never ending prototype and simply turning it into
production software.

382

20.3 Finding the Technical Solutions

Figure 20.10: Correct execution of “Drop to the ground” and spinning instructions - in
both cases we use the fact that the system loses detection to trigger visual
reactions

Choreographies for Humans and Stars with its demands of high-res video animations
provided a decent time frame allowing for proper project development and gave me
all the right reasons to return to openFrameworks. Helpful at this stage was that most
prototyping of content and interaction happened with non-interactive videos produced
with video editing software. Any truly interactive prototype had to wait for all the pieces
(camera placement on site, trained tracking software) to come together.

OpenFrameworks was chosen as the programming environments because of C++’s fast
processing speed, it’s addons, the open-source nature of many similar projects dealing
with video and animation content, and mostly its avid and rarely not-helpful commu-
nity forum. A main reason was also openFrameworks cross-platform ability, as i am
personally on a Windows 7 laptop, while the office is reigned over by Macs, and the
decision had been made to give it a try with Linux computers for the installation. So
being able to jump between the different operating systems while still developing the
same software was naturally a plus.

20.3.3 Additional software used

• processing¹⁵ … for creating OSC communication dummies
• switcher¹⁶ … to stream video files to shared memory
• libshmdata¹⁷ … to share video via shared memory
• Photoshop, Final Cut Pro … to produce and edit image / video content

¹⁵http://processing.org/
¹⁶https://code.sat.qc.ca/redmine/projects/switcher
¹⁷https://github.com/sat-metalab/libshmdata

383

http://processing.org/
https://code.sat.qc.ca/redmine/projects/switcher
https://github.com/sat-metalab/libshmdata

20 Case Study: Choreographies for Humans and Stars

20.4 Developing the Visualization Software

20.4.1 Development setup

The openFrameworks linux install is build for codeblocks, yet as i have come to like the
code editor Sublime Text¹⁸ for its lightweightness and simplicity, i chose to program
in Sublime and then compile ($ make) and run the program ($./bin/appName) from
the terminal (or terminator¹⁹). On my win7 laptop i code with Sublime, but compile and
run the software from within Codeblocks. Besides its purpose of providing a history
of the code, i use github mainly to push code between development and production
computers. Alongside Sublime and a bunch of terminal windows, my typical program-
ming setup includes a browser with tabs open on the openFrameworks forum, the
openFrameworks documentation page, and github (to search specific function uses).

20.4.2 Quick summary of what the app does

The application navigates the projection through a sequence of 6 scenes that have
different visuals and choreography instructions. When participants follow the instruc-
tions (and hop, or line-up, or run around ..) the application receives their position
data, analyses it for each scene’s interaction requirements, and then controls video el-
ements on the projection. In some scenes the participant’s location is directly mapped
to a video element location, in other scenes participant movements simply cause
videos to appear/disappear on screen.

The addons used for the application:

• ofEvents … for controlling the animation
• ofxOsc … for communication between computers
• ofxOpenCv … only for running a perspective transformation
• ofxGui … to build a GUI

20.4.3 Sequential structure

The transition from one scene and segment to the next is either time-dependent
(elapsed time comparison with ofGetUnixTime()) or based on the participants
successful execution of instructions (did they all freeze?). Yet even if no interaction
goal is achieved, a set maximum timer will still cause the transition to the next scene.

While the system usually goes through all scenes sequentially, the scene requiring at
least 2 participants will be skipped if not enough people are detected in the dance

¹⁸http://www.sublimetext.com/
¹⁹http://gnometerminator.blogspot.ca/p/introduction.html

384

http://www.sublimetext.com/
http://gnometerminator.blogspot.ca/p/introduction.html

20.4 Developing the Visualization Software

zone. Additionally the system will fall into an idle mode, if no participants have been
detected during the last 30 seconds. After the idle mode it restarts the sequence with
scene 1.

20.4.4 Incoming tracking data

The tracking software blobserver on the camera computer acts as OSC server and is
configured to send tracking data to the IP address of the projection computer. Similarly
the openFrameworks app registers itself as OSC client on the OSC server and is able to
tune the tracking parameters according to specific scene requirements.

To be able to test and simulate the two-way OSC communication i created several
processing dummies, which turned out to be very useful for occasions without the full
technical setup. (1: dummy to print out received message. 2: dummy to send tracking
parameters. 3: dummy to simulate incoming tracking data).

20.4.4.1 Dealing with split message blocks and framerate differences

The OSC messages sent by the tracking software take this format:� �
/blobserver/startFrame 389 1
/blobserver/hog 128 140 287 0.4 1.2 77 4 1
/blobserver/hog 135 418 103 2.2 2.8 20 0 0
/blobserver/hog 136 356 72 0.3 0.2 18 0 0
/blobserver/endFrame� �
Each message with the address line /blobserver/hog signifies the tracking data for
one recognized shape, and communicates blob id, position, velocity, age, etc. Bounded
by the /blobserver/startFrame and /blobserver/endFramemessages, an arbitrary
amount of tracking messages (= current number of people recognized) can be received
at any time. The frequency of those message blocks depends on the framerate of
blobserver.

As it can’t be guaranteed that blobserver and openFrameworks always run on the same
framerate, it could happen that multiple tracking updates arrive before the openFrame-
works baseApp calls update() again. It was therefore necessary to store away new
incoming data and only trigger the actual processing of that data after all incoming
messages have been parsed.

Similarly it could happen that half of the tracking messages are received before, and
the other half after the baseApp’s update() loop. To avoid this splitting of data to
cause glitches (system thinks a specific blob-id disappeared, while it just hasn’t been
updated yet), it was necessary to hold off all processing of data, before at least one
/blobserver/endFrame has been received during each openFrameworks frame.

385

20 Case Study: Choreographies for Humans and Stars

20.4.4.2 Storing and updating tracking data

The received tracking data is stored in a map of Blob objects std::map<int,Blob>
blobs. Maps give all the flexibility of vectors (loop, iterator, etc.) but also allow for easy
access of entities via their id.

If new tracking data arrives, the system first checks if the blob-id already exists in the
map or if it needs to be created. Then it updates the instance with the new data.� �
while (receiver.hasWaitingMessages()) {

// ...
if(m.getAddress() == "/blobserver/hog") {

// parse incoming message arguments
int blobid = m.getArgAsInt32(0);
int posx = m.getArgAsInt32(1);
int posy = m.getArgAsInt32(2);

// first look if object with that ID already exists
std::map<int,Blob>::iterator iter = blobs.find(blobid);
if(iter == blobs.end()) {

// didn't exist yet, therefore we create it
blobs[blobid].id = blobid;
//....
ofAddListener(blobs[blobid].onLost, this,

&planeApp::blobOnLost);
}

// now update the blob (old or new)
Blob* b = &blobs.find(blobid)->second;
b->setRawPosition(posx, posy);
b->setVelocity(velx, vely);
b->age = age;
//....

}

}� �
After the new tracking information has been filed away into the blobs map, the blobs
map is cleaned of all non-updated members.

20.4.4.3 Perspective transformation

The blob location data received from the tracking software is based on the angled view
of the slightly off-center mounted camera. To be able to better tell the participants’

386

20.4 Developing the Visualization Software

position within the dance stage and their distance to each other, it was necessary to
map that skewed 3d location data into a cleaner top-down perspective. Additional
rotation of the now 2dimensional data enabled it to easily tell if participants aligned
themselves along the axis facing the projection. The skewing and rotating of the data
is achieved via cv::perspectiveTransform.

Figure 20.11: Transforming the perspective from the off-center camera to a correctly
aligned top-down view

20.4.5 Implementing video content

All our visual raw material exists in the form of videos (and some images). Besides
written instructions that are drawn, everything on the projection is direct video display
without any effects.

20.4.5.1 The quest for the right codec

When we first received the computer hardware i did a series of performance tests with
video files of different codecs to determine how we would prepare our video content.
The mistake i made was that i primarily focused on video playback. And once the setup
would play multiple video instances at HD resolution, 30fps, in every codec (H.264,
photoJPEG, quicktimePNG, animation, raw) while still providing a framerate of 60FPS, i
was convinced the top-notch CPU and GPU would be able to handle it all.
What i didn’t consider was the load on the processor that comes from loading, decod-
ing, starting, releasing and deleting of multiple video objects within short time spans.
This insight finally dawned close to the project’s opening date, when more and more
photoJPEG and quicktimePNG (alpha) video files were added to the project and the
framerate suddenly started to dwindle. Luckily for us, that drop in performance was
not clearly visible to the unknowing eye, as the project’s overall handmade look’n’feel
(due to the material’s origin from analog stop-motion techniques) allowed for more
tolerance regarding the framerate.
Another round of video performance tests (post opening) led to the conclusion that
we’d re-encode all videos with the animation codec at the lowest framerate the video

387

20 Case Study: Choreographies for Humans and Stars

content allowed (5, 10, 15fps). Even though the video files were larger in size, the less
strong compression factor minimized the processor’s decoding time.

Still, we encountered a few platform and player-dependent idiosyncrasies. an un-
solved mystery is still why gstreamer doesn’t like certain custom resolutions and dis-
plays a green line underneath those video (our fix: find a new resolution).

20.4.5.2 Dynamic video elements

While the background videos appear on schedule and are preloaded by the system,
most foreground videos appear dynamically based on participant actions. To be able to
handle them easily all dynamic video elements are stored in a vector of shared pointers
std::vector< ofPtr<mediaElement> > fgMedia. The whole vector of pointers can
then be updated and drawn, no matter how few or many videos of shootings stars or
planets are currently being displayed. By using ofPtr one doesn’t need to worry about
properly releasing dynamically allocated memory.

Example: Everytime a user stands still long enough during scene 1, a video element
displaying a blinking star gets added to the vector:� �
// add new STAR video
fgMedia.push_back(ofPtr<mediaElement>(new

videoElement("video/stars/STAR_01.mov")));

// set position of video, and press play
(*fgMedia[fgMedia.size()-1]).setPosition(blobMapToScreen(

blobs[blobID].position));
(*fgMedia[fgMedia.size()-1]).playVideo();

// link blob to video, to be able to control it later
blobs[blobID].mediaLink = fgMedia[fgMedia.size()-1];� �
20.4.5.3 Preloading versus dynamic loading

In general all video sources that are used in a controlled way (as in: used only as one
instance) are preloaded at startup of the software. For video sources that are called up
dynamically in possibly multiple instances at once, a combination of two approaches
were used:

1. Load the video content when needed … freezes whole app momentarily while
loading file, unless the video loading is executed within a thread

2. Preload a large enough vector of multiple instances of the video, then cycle
through them with a pointer … allows for faster access/display, yet slows down
the application if used for too big or too many video files

388

20.4 Developing the Visualization Software

20.4.6 Event-driven animation

The control of video elements by the blobs (detected participants) is implemented
with ofEvent() calls. Events are an good way of giving objects a way of controlling
elements in the baseApp without having to query each objects possible states from
the baseApp’s update() loop, or without having to give objects a pointer to the whole
baseApp.

Blob objects have multiple events they can trigger actions in the baseApp:

• onEnterStage … enter dance zone, used to make videos appear
• onLeaveStage … leave dance zone, used to make videos disappear
• updatePosition … called on every frame, to update position-mapped video ele-
ments

• onLost … not detected anymore (but still alive!), used for Hop! Run! Drop! video
triggers

• onFreeze … stopped moving, used to make videos appear or force transitions (all
freeze!)

• unFreeze … started moving again, used to make videos disappear
• overFreeze … hasn’t moved for x seconds, used to make constellations appear
• onSteady … at same distance to neighbor for x seconds, used to create star
bridges between neighbors

• onBreakSteady … broke steady distance with neighbor, let star bridge disappear
• prepareToDie … make sure to disconnect all connected videos
• …

ofEvent instances are defined in the blob object header:� �
class Blob {

ofEvent<int> onLost;
ofEvent<int> onFreeze;
ofEvent<int> unFreeze;

}� �
When a new blob object is created in the baseApp, ofAddListener() connects the
object’s events to functions within the baseApp.� �
// create new blob
blobs[blobid].id = blobid;

ofAddListener(blobs[blobid].onLost, this, &planeApp::blobOnLost);
ofAddListener(blobs[blobid].onFreeze, this, &planeApp::blobOnFreeze

);
ofAddListener(blobs[blobid].unFreeze, this, &planeApp::blobUnFreeze

);

389

20 Case Study: Choreographies for Humans and Stars

// ...� �
When a blob then updates and analyses its position, velocity etc. it can trigger those
events with ofNotifyEvent().� �
void Blob::evalVelocity(float freezeMaxVel, float freezeMinTime) {

if (this->vel < freezeMaxVel) {
if (!frozen) {

frozen = true;
ofNotifyEvent(onFreeze,this->id,this);

}
} else {

if (frozen) {
frozen = false;
ofNotifyEvent(unFreeze,this->id,this);

}
}

}� �
The ofNotifyEvent() call then triggers the connected function in the baseApp:� �
void planeApp::blobOnFreeze(int & blobID) {

if (scene==STARS && blobs[blobID].onStage) {
// add new STAR video
fgMedia.push_back(ofPtr<mediaElement>(new

videoElement("video/stars/STAR_01.mov")));
// ...

}

}� �
20.4.7 Debug screen and finetuning interaction

For testing and tuning purposes the application is run on 2 screens: the projection
and the debug screen (by using window.setMultiDisplayFullscreen(true)). The
debug screen shows a visualization of the tracking data, the states of the blobs relevant
for the current scene, two GUI panels for finetuning parameters, and a smaller preview
of the projection view.

When doing live testruns on site it is important to have all interaction parameters easily
accessible via a GUI. Thresholds like: what velocity defines “standing still”, or how exact
does the alignment need to be to activate the eclipse - are easier to tune if comparison
runs don’t need to get interrupted by software compilation time.

390

20.5 Fail-safes and dirty fixes

Figure 20.12: The debugscreen showing (from the top left): the abstracted camera view,
the transformed top-down view, tracking analysis, the output visuals, sys-
tem states and tunable parameters

20.5 Fail-safes and dirty fixes

The nights before the opening were naturally used for heavy test sessions that led to
some restructuring, some video updates and lots of parameters finetunings. Late night
coding over remote desktop while dressing up every 5 minutes to run outside into the
cold to test the changes with camera vision and projection - not the best of scenarios.
Combined with the natural occurrence of bugs, suddenly the software didn’t seem as
stable and fast as just a few days ago. A mysterious segmentation fault error kept
appearing (not often enough to be easily traceable), but other pressing issues didn’t
allow for proper investigations into the error’s roots.

The opening day had me glued next to the projection computer, ready to hit a button
or change a parameter, in case of unexpected crashes or lagging framerates. The next
day - before the project went live on its daily schedule of 5pm to midnight - turned into
an exercise of setting priorities. Instead of going into debug mode and investigating
errors, the main goal was to to keep the app going seamlessly during showtime.

20.5.1 First: Keep your App alive

The one good thing about segmentation faults is that they kill your application very
fast. The software crashes and in the next frame you are left with your desktop back-
ground (which should be black). The perfect fail-safe solution for this is something like
daemontools²⁰ (linux), which is a background process that monitors your application
and restarts it within a second in case it crashes. After setting up supervision with

²⁰http://cr.yp.to/daemontools.html

391

http://cr.yp.to/daemontools.html

20 Case Study: Choreographies for Humans and Stars

daemontools, the application could crash, but all people would see is a few seconds
of black (depending on how long the preloading of video files takes on startup).

20.5.2 Second: Framerate cheats

The second concern was the prevent or hide the drops in framerate that would be
caused by too many dynamic videos being active at the same time.

• Erratic framerate variations can be hidden by updating animations with a FPS-
dependent value ofGetLastFrameTime()

• If the application’s memory usage grows over time it probably has hidden mem-
ory leaks. To counter a steady drop in framerate it’s not a bad idea to regularly
terminate the app voluntarily. We found a natural and seamless opportunity to
restart our application at the end of each 6-scene sequence.

• By putting realistic limits on the number of your processed objects (blobs, video
elements), you can avoid major framerate drops when mysterious glitches sud-
denly report the simultaneous detection of 100 blobs.

20.5.3 Always: Investigate

In order to understand and fix what’s going wrong in your application, it’s necessary to
find ways of monitoring what’s going on under the hood.

• I use ofLogToFile() to make each run save out its stack trace to a timestamp-
named log file. Being able to go back and search for similar interaction sequences
in history, allows me to compare if a certain hack solved a problem.

• When implementing memory-related changes (threaded objects, preloading of
multiple videos, etc.) it is good to execute extreme use cases while having an
eye on the application’s CPU and RAM stats ($ top). This allows for a systematic
comparison and early spotting of potential bottlenecks.

20.5.4 Finally: Optimize

Once an installation has been open to the public for a few days, it hopefully has re-
vealed all its weak points. After the stress of finding quick fixes to hide those weak-
nesses - and a few days of healthy mental detachment from the project - it was time
to tackle and optimize the software with a clear mind.

• By replacing all video files that can easily also be drawn with opengl, your appli-
cation will perform better.

• What to implement with threads?

392

20.6 Results and Reception

20.6 Results and Reception

At the point of writing this chapter Choreographies for Humans and Stars has been on
show for 2-3 winter months. The projection on the shiny building looks very stunning
and the snow landscape gives the site a beautiful lunar feeling. The project seems
successful in addressing different kinds of audiences and manages to engage kids,
teens and parents alike.

While for most people the choreography instructions seem easy to follow, we’ve also
observed several peoplemistaking the 7 concrete stones as interactive trigger elements.
The confusion might be due to the delicate LEDs in the stones looking like sensors, or
the descriptive text relief sculpted on top of the stones.

Figure 20.13: Participants mistaking the stones as sensor objects

The reception from the audience is very good even though the usage count is not very
high yet. Besides at events like Montreal’s Nuit Blanche - luring with fires and hot
beverages - the winter season with its low temperatures currently prohibits people
from hanging out and letting the site become a destination in itself.

For objective analysis of usage and interaction behaviours we are gathering data with a
simple logging system. It will be interesting to observe the usage over time and analyse
the difference between seasons and succeeding years. Besides looking at number, we
are also curious to see how people (the planetarium staff, visitors and passersby) will
live with the piece over time.

393

20 Case Study: Choreographies for Humans and Stars

Figure 20.14: Explosions on the sun are triggered by jumping

Figure 20.15: The final instruction of the cycle asks participants to drop to the ground,
exhale and look at the sky

394

21 Case Study: Anthropocene, an
interactive film installation for
Greenpeace as part of their field at
Glastonbury 2013

21.1 Project Overview

Anthropocene

Adjective

Relating to or denoting the current geological age, viewed as the period during which
human activity has been been the dominant influence on climate and the environment.

To see the finished project as part of a wider video all about the Greenpeace Field at
Glastonbury 2013, please see the YouTube link below:

http://youtu.be/LwokmKqT0og?t=1m12s

Or an exceprt from inside the dome here:

https://vimeo.com/97113402

All source code can be found here:

https://github.com/HellicarAndLewis/Anthropocene

21.2 The Project

21.2.1 Initial Brief from Client

On 9th April 2013 we were approached by Paul Earnshaw of Greenpeace about an in-
stallation as part of Greenpeace’s Field at Glastonbury 2013, a large music festival in
the South West of England. Another interaction design studio had previously been in
place to create a five day experience due to go live for the public duration of the fes-
tival on the 25th of June, but a scheduling conflict had emerged that had meant that
they had to reluctantly withdraw.

395

21 Case Study: Anthropocene, an interactive film installation for Greenpeace as part of their field at Glastonbury 2013

Paul already had a budget and a unique space picked out for the installation, a large
geodesic dome:

Figure 21.1: External Shell Structure for Installation from Client

21.2.2 Our response

We initially sought out a projector hire firm, who responded with a quote and a plan for
a projection setup that met our requirements for maximum visual impact on a budget:

Figure 21.2: Initial Projection Plan from Projector Firm

After some studio thinking, by 16th April we responded with the following document:

396

21.2 The Project

Figure 21.3: First Page of Presentation

We would like this installation to be a relaxing and immersive space. An
oasis where the viewer can relax on bean bags looking up at a screen.

We will use a mix of existing Greenpeace footage and a generative sound-
scape to build a beautiful abstraction of the Arctic.

We would like to project onto the ceiling of the space, using either a rect-
angular, square or circular projection surface. We will experiment with dif-
ferent projection >shapes and see what fits best aesthetically as well as
meeting the budget.

We would like to explore the following ideas within the imagery, sound and
feeling of the space.

1: The space as a timepiece - trying to have a cycle of sunset, night and dawn
- each lasting around five minutes and having a single interaction between
the floor and >ceiling that is explored graphically and interactively.

2: Kaleidoscopes, shattering or delaying or time stretching footage. Break-
ing it up into blocks of time. Arranging in grids, or having different delays in
different parts. >The possibility of peoples movement being mirrored into
the video playback in interesting ways, playing with time.

3: Making an oasis away from the rest of the festival that would last around
15 minutes, but raise some points about how the cycle of seasons of the
Arctic are being >affected.

4: Generative audio - a four channel speaker system that adds depth and
texture the visuals.

397

21 Case Study: Anthropocene, an interactive film installation for Greenpeace as part of their field at Glastonbury 2013

On April 30th, we recieved an email from Paul:

“..we would love you to implement your proposal in our main feature of the dome at
Glastonbury Festival this year…”

We had the project! Now it was time to get real about the budget, and see if we could
get some interesting musical collaborators…

During May, we concentrated on discovering what film footage was available, and final-
ising the production design and kit list. My business partner Pete Hellicar spent many
hours working on the edit of the film, aiming to complete it while other negotiations
continued.

398

21.2 The Project

21.2.3 Audio negotiations

On May 10th, Pete reached out to our friends at Warp Records to see if any of their
artists would be interested in donating their music to the project, and by the nick of
project time we had permission from several artists to use their sounds.

21.2.4 Supplier change, Final Budget Negotiations and Interaction Plan

By the end of May, we had changed hardware suppliers to ones already working with
Greenpeace on their field, and had found replacement kit for our production. After
experimenting with a circular projection screen, we’d arrived at a traditional projector
set-up within the dome - a large rectangular projection screen about halfway up the
dome wall with seating arranged in front of it. We’d also reached a final budget, and I
was ready to start coding.

Pete and I had arrived at a final interactive concept after some discussions with Paul,
who stated that a “show time” of about 15 minutes was desirable - enough time to get a
detailed message across, but not so long as to bore a casual visitor. Pete took his film
edit to 15 minutes and had it approved by the Greenpeace team for pacing and content.
We decided to use the Microsoft Kinect to allow the openFrameworks application to
distort or effect the film footage in real time - based on viewers movements in front
of the projection screen. To make the dome a bit more comfortable Paul arranged the
donation of several jumbo size bean bags - meaning that visitors could lie comfortably
and wave their hands in the air to interact with the film - we angled the Kinect to
hopefully pick up unintended user interaction first, surprising users and gently guiding
them to stand in front of the bean bags and use their whole bodies to interact. We knew
we had to strike a balance between a pre-scripted show and a completely spontaneous
one - so we decided on developing several visual looks which could be placed onto a
time line for easy repetition, editing and playback. The aim was to get to a system with
the reliability of a static linear film and the responsivity of a live “VJ” system - albeit one
that used the viewers silhouette rather than pre-rendered matts to affect the edited
Greenpeace film.

At the beginning of June 2014 we received the following image from Paul:

The site awaited us.

399

21 Case Study: Anthropocene, an interactive film installation for Greenpeace as part of their field at Glastonbury 2013

Figure 21.4: Site Visit by Client

400

21.2 The Project

21.2.5 Interactive Background to Delay Maps, and the possibility of
generating a Delay Map from the Kinect Depth Image

We are the time. We are

the famous. Created at Fabrica.

401

21 Case Study: Anthropocene, an interactive film installation for Greenpeace as part of their field at Glastonbury 2013

Hereafter by United Visual Artists.
Feedback by Hellicar&Lewis.

Pete started the project by doing some sketches in Photoshop of how two dimensional
angular shapes could “shatter” video footage - I realised that we could make similar
effects in real time by using a delay map. This brought me back to previous projects
around varying video delay across a whole image - starting with “We are the time. We
are the famous”¹ at Fabrica², continuing with Hereafter³ at UnitedVisualArtists⁴ and
finally Feedback⁵ at Hellicar&Lewis⁶. Many people have been interested in this area
for some time, Golan Levin⁷ has compiled a list of related works⁸.

A delay map is simply grey-scale image that is used in combination with a digital video
file to decide how much the video file should be delayed on a per-pixel basis. In this
projects case a white pixel in a certain position in the delay map meant that there
would be zero delay on the corresponding pixel of the video file currently being played
back. Conversely, a black pixel in the delay map image would mean the maximum
frame delay on the corresponding pixel of the video file. I.e. a completely white delay
map image would combine with a video file to play back with zero delay, whilst a black
image would give a uniform maximum delay - a linear horizontal grey-scale gradient
would give a gradated delay from 0 on the white side to maximum on the black side -
with all divisions smoothly displayed in between.

Delay maps are a great way of allowing an art director to quickly “paint” several grey-
scale images in Photoshop or some similar image editing program and see the effects
of that map on any video file - abstracting away the technical details of the underly-
ing video delay code. This approach of using imagery to control underlying code is a
particularly effective technique - making new tools for Art Directors to interface with

¹http://www.benettongroup.com/40years-press/fabrica_yeux_ouverts.html
²http://fabrica.it/
³http://uva.co.uk/work/hereafter
⁴http://uva.co.uk/
⁵http://www.hellicarandlewis.com/the-roundhouse/
⁶http://hellicarandlewis.com
⁷http://www.flong.com/
⁸http://www.flong.com/texts/lists/slit_scan/

402

http://www.benettongroup.com/40years-press/fabrica_yeux_ouverts.html
http://fabrica.it/
http://uva.co.uk/work/hereafter
http://uva.co.uk/
http://www.hellicarandlewis.com/the-roundhouse/
http://hellicarandlewis.com
http://www.flong.com/
http://www.flong.com/texts/lists/slit_scan/

21.2 The Project

code using visual techniques rather than syntax and text heavy traditional software
engineering techniques.

The breakthrough after this initial thinking was to try to think of what other grey-scale
maps I had seen - the live depth image of the Kinect! This would allow peoples 3D sil-
houettes to create per pixel delay maps that would change in real-time as they moved
in front of the 3D sensors of the Microsoft device. The addition of James Georges ofxS-
litScan⁹ made swapping in and out static grey scale maps very simple, all I had to do
was combine the depth map with his existing code on a frame by frame basis.

21.2.6 Actual Timeline

Here are the folder names of all the folders in my GreenpeaceArcticGlastonbury2013
folder.

• 2013_04_11_PlansAndContentFromGreenpeace
• 2013_04_16_ProjectorQuotes
• 2013_04_30_PeteQuoteAndIdeas
• 2013_05_08_GlastoOverviewPlan
• 2013_05_14_PetePlanAndTechList
• 2013_05_20_GuestList
• 2013_05_28_CrewDetailsFromPete
• 2013_05_29_addons
• 2013_05_29_addonsAfterPragmatism
• 2013_05_29_ofxGUIFromDevelopGitHubBranch
• 2013_05_31_AddMaps
• 2013_06_02_BaficInvoice
• 2013_06_03_PeteEffectsFromSomantics
• 2013_06_04_HomeHigherResForPete
• 2013_06_06_CallToActionScript
• 2013_06_12_CrewForFieldReadup
• 2013_06_12_Font
• 2013_06_12_GreenpeaceLogos
• 2013_06_12_MoreCrewBriefing
• 2013_06_13_HuntResult
• 2013_06_13_MoreDurationBits
• 2013_06_13_obviousJimAudioReactiveRing
• 2013_06_16_ofxTimelineVideo
• 2013_06_19_Singleton
• 2013_06_19_VoiceOverOutro

⁹https://github.com/obviousjim/ofxSlitScan

403

https://github.com/obviousjim/ofxSlitScan

21 Case Study: Anthropocene, an interactive film installation for Greenpeace as part of their field at Glastonbury 2013

• 2013_06_20_CateringMenu
• 2013_06_20_NewAddonsToTry
• 2013_06_24_CodeForArtFromJeffTimesten
• 2013_06_24_DeadFlock
• 2013_06_24_newFilmAndAudio
• 2013_06_24_ofxAddonsOFXContourUtil
• 2013_07_31_Final50Invoice
• 2013_08_18_ThankYouFromGreenpeace

21.3 Development

21.3.1 Development Hardware and Software setup

MacBook Pro * 15-inch, Mid 2009 * Processor: 3.06 GHz Intel Core 2 Duo * Memory: 4
GB 1067 MHz DDR3 * Graphics: NVIDIA GeForce 9600M GT 512 MB

• XCode for Development
• Chrome for Web Browsing
• Sublime Text for logging

21.3.2 Explanation and Discussion of Development in Detail

21.3.2.1 ofxKinect, as a possible input to ofxSlitScan

One of the benefits of using a platform like openFrameworks is that when people do
release extras or “addons” they inevitably interface with the core - interesting results
can be found by thinking about how addons can interface with each other using the
core as a bridge.

In ofxKinect and ofxSlitScan’s case, both addons used the same type of data:� �
unsigned char* getDepthPixels(); ///< grayscale values //from

ofxKinect.h� �
and� �
void setDelayMap(unsigned char* map, ofImageType type); //from

ofxSlitScan.h� �
So connecting them was simple:� �
slitScan.setDelayMap(depthPixels); //from testApp::update() in

testApp.cpp� �
404

21.3 Development

This kind of separation demonstrates encapsulation or the information hiding qualities
of software - the utility of not having to know the specifics of the implementation of
the functionality described, merely the inputs required and outputs produced.

http://en.wikipedia.org/wiki/Encapsulation_(object-oriented_programming) http://en.wikipedia.org/wiki/Information_hiding

21.3.2.2 ofxSlitScan, using PNG’s and moving to generating realtime delay maps,
making a Aurora

Starting is often the hardest thing to do with programming. To combat this, I try to
do the stupidest, most obvious thing first and then build from there. In this project,
I started by prototyping various looks using static PNGs - feeding new data into the
examples provided with ofxSlitScan. The provided an easy sketching ability - combined
with a paint program to quickly produce many input variations.

The next place to experiment was making the input real-time and interactive - using
the blobs from a sliced section of the live Kinect depth image from ofxKinect. Drawing
these simple blobs as an image allowed them to be inputted into ofxSlitscan on a frame
by frame basis - producing a time warping effect over the playback of the film that Pete
Hellicar edited for the project. As so often happens, when the input to the interaction
becomes real-time it was far more engaging, which is exactly what we wanted users
to do - see SLITSCANKINECTDEPTHGREY mode below for more details on the precise
implementation, and in the other cases that follow.

What else could be done with the depth information applied to the delay map of the
slit scan? Experiments with effecting the blobs outline yielded the SPIKYBLOBSLITSCAN
mode. Using the input from the Kinect as an input to a paint simulator was something
that I had worked on with Marek Bereza in the Somantics project - it made sense to try
it as an input to a slitscan, as can be seen in the PAINT mode. This Paint mode made
something that very much resembled the appearance of a human aurora when mixed
with the beautiful Borealis footage that Pete Hellicar had sourced with the help of
Greenpeace. SPARKLE mode was another example of a successful port from Somantics
to Anthropocene.

Another good strategy for finding new interesting things is to feed the output of a
system back into its input - this is demonstrated well by the visual feedback effects
produced by using video frames as the delay maps back into their own history - imple-
mented in SELFSLITSCAN mode.

21.3.2.3 ofxBox2d, making ice, previous projects with Todd Vanderlin

I had previously worked with Todd Vanderlin on the Feedback project, where we had
experimented with using Box2D (via Todd’s ofxBox2D) as a way of “shattering” live video.
Feedback used a screen orientated in portrait mode that encouraged the repeating of

405

21 Case Study: Anthropocene, an interactive film installation for Greenpeace as part of their field at Glastonbury 2013

familiar existing behaviour - moving the experience from a tech demo to a playful
joyous one. Having earlier experimented with ice like static PNG’s I knew that using
real-time triangles from ofxBox2D would work well - this time I had the advantage via
the Kinect of a slice of 3D space as input, something that Todd had to work much harder
to simulate using only 2D live camera input in Feedback. This aspect of constantly
improving novel hardware inputs means that previous work can often be revisited and
explored.

21.3.2.4 ofxTimeline, understanding how cuing works

To combine the film and the various real-time effects, it was essential to develop a
cuing system to allow different effects to combine with different scenes in a reliably
repeatable way. I began by experimenting with Duration, but after emailing the author
of the addon (see development notes above), it become apparent that ofxTimeline
would be a much better fit for the project - a subset of Durations code base.

After dealing with Quicktime performance issues (see below), the main challenge was
cuing the effects. The structure of how ofxTimeline passes messages meant that the
signal to switch scenes would only be sent when the play-head passed over the cue
- clicking to a point after a cue meant that the signal to switch scenes would not be
despatched. Deadlines of other functionality meant that this couldn’t be fixed in time
for show time - meaning that show operators would have to be careful when shuffling
playback during the show proper.

21.3.2.5 ofxGui, running the Latest branch from Github, multiple input methods and
GUI addons

I knew that I wanted to augment ofxTimelines interface with controls for the setup
of the Kinect and other custom requirements for the project. Watching the GitHub
development branch revealed the release of an official core GUI addon - something
I wanted to experiment with, which meant that I had to switch from an official static
release of OF to the live development branch via Github. The project ended up with
multiple interfaces - two graphical ones (ofxTimeline and ofxKinect control mainly)
and a keyboard based one (consisting mainly of single boolean switches together with
playback and editing shortcuts). With further development, a unified GUI would be
desirable, but development pressures meant it wasn’t a priority.

21.3.2.6 ofxOpticalFlowFarneback, making a polar bear

During development and testing, I realised a furry look could serve well for making
people feel like they were polar bears. I had seen “spikey” outline looks before - all

406

21.3 Development

achieved by drawing normals along the circumference of a blob. I’d also experimented
with optical flow in previous projects and started thinking about how the two could be
combined - I looked for optical flow addons on ofxaddons.com¹⁰ and discovered a flurry
of recent activity since I’d last checked. Development tends to flow like this - periods
of fallow followed by simultaneous parallel development from several quarters.

• ofxCvOpticalFlowLK by James George¹¹
• ofxOpticalFlowFarneback by Tim Scaffidi¹²
• ofxOpticalFlowLK by Lukasz Karluk¹³

Tim Scaffidi’s version immediately stood out to Pete, so I developed two simple colour-
ings for Aurora and Polar Bear modes, merely tweaking Tim’s excellent demo code.

21.3.3 XML Issues around the Naming of Scenes

Mid development, I found that saving the XML wasn’t functioning as expected - it turned
out to be the fault of non alpha numeric characters in scene names. I learnt the hard
way that it’s always good to avoid punctuation and spaces altogether and use Camel-
Case¹⁴.

21.3.4 Video Performance, using the HighPerformanceExample

Right from the beginning of the project, it was obvious that video decoding would be
significant portion of processing time per frame. Others in the openFrameworks com-
munity had been investigating performance in recent years, with James George con-
tributing an OSX only High Performance video example¹⁵. This used native Quicktime
playback features, enabling far higher performance on compatible hardware. While
this undoubted enabled the film playback to function smoothly, it did make the code
less platform independent - one of the inevitable compromises that happens during
development.

21.3.5 Counting the items in an Enum

I knew that I would have to switch between different visual looks as the film was played
back by the program. C++ provides the ENUM keyword to allow the coder to define

¹⁰http://ofxaddons.com
¹¹https://github.com/Flightphase/ofxCvOpticalFlowLK
¹²https://github.com/timscaffidi/ofxOpticalFlowFarneback
¹³https://github.com/julapy/ofxOpticalFlowLK
¹⁴http://en.wikipedia.org/wiki/CamelCase
¹⁵https://github.com/openframeworks/openFrameworks/commit/4e02db8d82c520bef6c09d58b37076a84fe37571

407

http://ofxaddons.com
https://github.com/Flightphase/ofxCvOpticalFlowLK
https://github.com/timscaffidi/ofxOpticalFlowFarneback
https://github.com/julapy/ofxOpticalFlowLK
http://en.wikipedia.org/wiki/CamelCase
https://github.com/openframeworks/openFrameworks/commit/4e02db8d82c520bef6c09d58b37076a84fe37571

21 Case Study: Anthropocene, an interactive film installation for Greenpeace as part of their field at Glastonbury 2013

a data set of named elements, but I needed a way to count the number of modes
programmatically. Stack Overflow¹⁶ provided the solution.� �
enum GreenpeaceModes {BLANK, GUI, VIDEO, VIDEOCIRCLES,

KINECTPOINTCLOUD, SLITSCANBASIC, SLITSCANKINECTDEPTHGREY,
SPARKLE, VERTICALMIRROR, HORIZONTALMIRROR, KALEIDOSCOPE,
COLOURFUR, DEPTH, SHATTER, SELFSLITSCAN, SPIKYBLOBSLITSCAN,
MIRRORKALEIDOSCOPE, PARTICLES, WHITEFUR, PAINT, GreenpeaceModes_
MAX = PAINT}; //best to use ALL CAPS for enumerated types and
constants so you can tell them from ClassNames and variableNames.
Use camelCase for variableNames -
http://en.wikipedia.org/wiki/CamelCase

/*
http://stackoverflow.com/questions/2102582/how-can-i-count-the-items-in-an-enum

For C++, there are various type-safe enum techniques available, and
some of those (such as the proposed-but-never-submitted
Boost.Enum) include support for getting the size of a enum.

The simplest approach, which works in C as well as C++, is to adopt
a convention of declaring a ...MAX value for each of your enum
types:

enum Folders { FA, FB, FC, Folders_MAX = FC };
ContainerClass *m_containers[Folders_MAX + 1];
....
m_containers[FA] = ...; // etc.
Edit: Regarding { FA, FB, FC, Folders_MAX = FC} versus {FA, FB, FC,

Folders_MAX]: I prefer setting the ...MAX value to the last
legal value of the enum for a few reasons:

The constant's name is technically more accurate (since Folders_MAX
gives the maximum possible enum value).

Personally, I feel like Folders_MAX = FC stands out from other
entries out a bit more (making it a bit harder to accidentally
add enum values without updating the max value, a problem Martin
York referenced).

GCC includes helpful warnings like "enumeration value not included
in switch" for code such as the following. Letting Folders_MAX
== FC + 1 breaks those warnings, since you end up with a bunch
of ...MAX enumeration values that should never be included in
switch.

switch (folder)
{
case FA: ...;
case FB: ...;
// Oops, forgot FC!
}

¹⁶http://stackoverflow.com/questions/2102582/how-can-i-count-the-items-in-an-enum

408

http://stackoverflow.com/questions/2102582/how-can-i-count-the-items-in-an-enum

21.4 Show time

*/� �
I used the Stack Overflow tip in the void testApp::keyPressed (int key) method.� �
case 'a': //used to be key left, but it interferes with ofxtimeline
{

currentMode = (GreenpeaceModes)((int)currentMode - 1);
if(currentMode < 0){

currentMode = GreenpeaceModes_MAX;//see .h file for
stackoverflow justification

}
break;

}
case 's': //used to be key right, but it interferes with ofxtimeline
{

currentMode = (GreenpeaceModes)((int)currentMode + 1);
if(currentMode > GreenpeaceModes_MAX){

currentMode = (GreenpeaceModes)0;//see .h file for
stackoverflow justification

}
}� �
While I could have gone down the polymorphic¹⁷ custom class route, I felt that the
ENUM apporach provided good performance (through compiler optimisation of com-
mon C++ coding paradigms), speed of development (lower file overhead) and clarity of
code.

21.3.6 Sequencing

Kieran and Pete completed the main sequencing on-site.

21.4 Show time

21.5 Post Event

The biggest PR boost to the project while it was live was a review¹⁸ from Timeout:
“A highlight of the Greenpeace field was undoubtedly the Arctic Dome, voted by Time
Out as the second best non-musical thing to do at the Festival and previewed by NME.
It offered people the opportunity to disappear through a crack in the ice and take a
magical 15-minute trip to the North Pole, where ice towered and the Northern Lights
danced.”
¹⁷http://en.wikipedia.org/wiki/Polymorphism_(computer_science)
¹⁸http://www.glastonburyfestivals.co.uk/news/greenpeace-at-glastonbury-2013

409

http://en.wikipedia.org/wiki/Polymorphism_(computer_science)
http://www.glastonburyfestivals.co.uk/news/greenpeace-at-glastonbury-2013

21 Case Study: Anthropocene, an interactive film installation for Greenpeace as part of their field at Glastonbury 2013

Figure 21.5: Kieran in front of the projection screen, final sequencing

Figure 21.6: The Installation in Action, 27th June 2013

410

21.5 Post Event

21.5.1 Testimony from Show Operators

Kieran and Bafic were the people who ran the show for the general public, below is
their testimony, with Kieran starting:

Did you have a routine before show time?

Before the first show of the day we’d double check the connection between the laptop
and the Kinect and test with the skeleton tracking that everything was working correctly.
Before show time we’d dim the lights, make sure the sound was turned on, switch to
the point cloud setting so people could see themselves as they walked in and then
we’d turn the beanbags upright so as to ’set the scene’. Then, as people started to
walk in we’d raise the lights as though they were walking on stage. And then before we
pressed play we’d dim the lights to black.

Any problems during shows? Crashes? Funny stories?

A couple of times the connection between the Kinect and the laptop failed due to the
cable being under tension so we just had to let the show run to the end before we
could fix it. The main problem we had was the projector overheating and displaying
a lamp warning which involved having to find the technician to sort it. At one point
the projector overheated so badly that we had to leave it switched off for 40 minutes
before we could run the show again.

Off the top of my head I can’t think of anything I’d like to change about it, the GUI had
quite a steep learning curve so it took a while to remember all the keys to press to hide
each part of the interface but once we’d mastered that everything was fine. I guess the
only thing that would be good but most likely ultimately un-achieveable would be full
automation in the sense that the station wouldn’t have to be manned at all times.

Following is Bafic’s post show report:

Did you have a routine before show time?

Before every show we would go through different ways to layout the bean bags. It’s
started off as just a small idea but as we kept on doing it we noticed that it would
affect how people acted with the film. Some were semi circles some were bean bags
set up in rows like cinema seats sometimes we pushed all bean bags to the back and
told people they had to stand up and use their full body to interact with the film.

When seated in rows people mostly used their arms (a few people were moving the
legs in air sitting down) but never was it a full body movement until we moved bean
bags to the back . Some excited people would stand up and run to in front of the Kinect
and interact with it that way, after they had finished they would sit down and someone
else would follow due to the sheer curiosity of seeing what the previous person had
done. It was interesting because everyone was so curious as to what would happen. I
was sitting their amazed because their were a few loops/back and forths happening.

411

21 Case Study: Anthropocene, an interactive film installation for Greenpeace as part of their field at Glastonbury 2013

1. You had the back and forth between the one person who would stand up interact
with the Kinect and then that would show up on the projection.

2. They would sit down and the next back and forth would be the next person to
stand up start off with maybe replicating the previous persons techniques and
movement AND Then coming up with the own ideas and movement.

3. then their was us who was watching and getting excited and seeing what they
were doing and changing effects depending on what the user was doing and what
we felt like could be interesting then obviously what we put on screen would ef-
fect how the person would dance/move/use their body. The whole thing was like
a 3x over Möbius strip of events and occurrences that kept affecting the previous
element and also the next element at the same time!

Any problems during shows? Crashes? Funny stories?

I can’t think of any crashes or problems that happened. Their was a time when some-
one came in with a puppet on a long stick and they waved it at the Kinect and that
would egg on the rest of the audience because this funny puppet would appear on
screen. The whole experience was really amazing and interesting.

21.5.2 Open Source discussions with Client

Greenpeace were happy for us to Open Source, as we do with all our projects. Green-
peace does not have a GitHub of it’s own, but we were able to suggest that that should
be part of their future strategy. The problem was the film that formed the backdrop for
the interaction - while musicians were happy to licensemusic for a live only experience,
getting those rights in perpetuity has been challenging. Negotiations continue.

21.5.3 Re-running remotely in Australia and New Zealand

The project has been re-exhibited twice in the Southern Hemisphere - in Australia
and New Zealand. Getting the code up and running wasn’t a problem - but training
someone to use the two layers of mouse GUI and on layer of Keyboard GUI was a
challenge, especially over a painfully slow Skype connection.

21.5.4 Future development

Paul Valery said ‘Poems are never finished - just abandoned’. This is sadly true for all
artistic endeavours. Below are three areas for future development.

412

21.5 Post Event

21.5.4.1 Social interaction

The Hello Wall¹⁹ and Hello Cube²⁰ projects showed how making feedback loops be-
tween users and installations via social networks is not only fun, but helps spread
awareness of the installation beyond the physical bounds of the project. Imagine al-
lowing users to post comments to the projection as it happening via Twitter and re-
ceiving bespoke screen grabs showing evidence of their interaction in return - or even
choosing which of the interactive effects is active at a certain time. The meta data
of these interactions could be used to come up with the most enaging timeline, or to
deliver messages to users in the days, weeks and months following the installation -
particularly useful for an organisation such as Greenpeace that relies on public sup-
port to lobby Governments and Corporations.

21.5.4.2 Broadcast

Pete and I discussed how we could transform the installation into one that broadcast
itself to a wider audience when we were in the planning stage. Unfortunately, secur-
ing a reliable Internet connection at the Glastonbury Music festival proved impossible.
Post and Previous Hellicar&Lewis projects for Nike²¹ and Coca-Cola²² show how broad-
casting an installation with the addition of social network interaction can dramatically
increase engagement. We hope to be able to make such a socially activated broadcast
interaction with Greenpeace in the near future - imagine several locations around the
world witnessing the same film simultaneously with body movement from each loca-
tion feeding back into the others - live video portals of depth maps crossing continents
and time zones to produce a truly global event.

21.5.4.3 Raspberry Pi

With the advent of a Raspberry Pi²³ port of openFrameworks, a port of the project to
the platform would allow for the deployment of the project to events that have even
smaller budgets than this iteration. This would also entail a port of the Kinect code to
2D computer vision, but I’m confident this would be a spur for other interactions and
visual effects.

¹⁹http://www.hellicarandlewis.com/the-hello-wall/
²⁰http://www.hellicarandlewis.com/tate-modern/
²¹http://www.hellicarandlewis.com/nikefeeltv/
²²http://www.hellicarandlewis.com/coke/
²³http://www.openframeworks.cc/setup/raspberrypi/

413

http://www.hellicarandlewis.com/the-hello-wall/
http://www.hellicarandlewis.com/tate-modern/
http://www.hellicarandlewis.com/nikefeeltv/
http://www.hellicarandlewis.com/coke/
http://www.openframeworks.cc/setup/raspberrypi/

21 Case Study: Anthropocene, an interactive film installation for Greenpeace as part of their field at Glastonbury 2013

21.5.5 Conclusion

All in all, for a low budget project, using openFrameworks was the differentiator that
enabled me to collaborate with the rest of the team at Hellicar&Lewis to make the
installation come to life. The key factors were being able to draw upon somany external
addons, previous projects and the community as a whole.

21.6 Team and Credits

• Pete Hellicar and Joel Gethin Lewis
• Commissioned by Paul Earnshaw of Greenpeace
• Produced by Sarah Toplis
• Assisted by Bafic²⁴ and Kieran Startup²⁵

Project uses addons and other code Contributions from:

• Marek Bereza aka Mazbox²⁶ as part of Cariad Interactive
• ofxKinect²⁷ by Theo Watson²⁸
• ofxSlitScan²⁹ by James George³⁰
• ofxBox2d³¹ by Todd Vanderlin³²
• ofxTimeline³³ by James George³⁴
• ofxOpticalFlowFarneback³⁵ by Tim Scaffidi³⁶

Thanks to: * All our families and friends. * The Greenpeace Family * Microsoft for being
Open * Theo Watson³⁷ * The entire openFrameworks community * Marshmallow Laser
Feast³⁸ * Tim Scaffidi³⁹ * James George⁴⁰ * YCAM InterLab⁴¹

²⁴http://www.bafic.co.uk/
²⁵http://www.kieranstartup.co.uk/
²⁶http://www.mazbox.com/
²⁷https://github.com/ofTheo/ofxKinect
²⁸http://www.theowatson.com/
²⁹https://github.com/obviousjim/ofxSlitScan
³⁰http://jamesgeorge.org/
³¹https://github.com/vanderlin/ofxBox2d
³²http://vanderlin.cc/
³³https://github.com/YCAMInterlab/ofxTimeline
³⁴http://jamesgeorge.org/
³⁵https://github.com/timscaffidi/ofxOpticalFlowFarneback
³⁶http://timothyscaffidi.com/
³⁷http://www.theowatson.com/
³⁸http://marshmallowlaserfeast.com/
³⁹http://timothyscaffidi.com/
⁴⁰http://jamesgeorge.org/
⁴¹http://interlab.ycam.jp/en

414

http://www.bafic.co.uk/
http://www.kieranstartup.co.uk/
http://www.mazbox.com/
https://github.com/ofTheo/ofxKinect
http://www.theowatson.com/
https://github.com/obviousjim/ofxSlitScan
http://jamesgeorge.org/
https://github.com/vanderlin/ofxBox2d
http://vanderlin.cc/
https://github.com/YCAMInterlab/ofxTimeline
http://jamesgeorge.org/
https://github.com/timscaffidi/ofxOpticalFlowFarneback
http://timothyscaffidi.com/
http://www.theowatson.com/
http://marshmallowlaserfeast.com/
http://timothyscaffidi.com/
http://jamesgeorge.org/
http://interlab.ycam.jp/en

21.7 Hardware selection

21.7 Hardware selection

• 1 x 3D Camera - Microsoft XBox360 Kinect
• 1 x Playback and Interaction Computer - MacBook Pro Retina
• 1 x 10K projector
• 1 x Projection Screen
• Sound - 4 x D&B T-10 Top + Amp 2 x Subs

21.8 Appendix 1: Code structure, main loop

The structure of setup(), update() and draw() methods is common to openFrameworks
code - with the addition of two large switch statements for switching between modes
at runtime.� �
//--
void testApp::update() {

//kinect
kinect.update();
// there is a new frame and we are connected
if(kinect.isFrameNew()) {

// load grayscale depth image from the kinect source
depthPreCrop.setFromPixels(kinect.getDepthPixels(),

kinect.width, kinect.height);

if(mirror){
depthPreCrop.mirror(false, true);

}

maskGrayImage();
depthPreCrop.flagImageChanged();

// save original depth, and do some preprocessing
depthOrig = depthPreCrop; //copy cropped image into orig
depthProcessed = depthOrig; //copy orig into processed
colorImageRGB = kinect.getPixels(); //getting colour pixels

if(invert) depthProcessed.invert();
if(mirror) {

colorImageRGB.mirror(false, true);
//greyIRSingleChannel.mirror(false, true);

}

depthOrig.flagImageChanged();
depthProcessed.flagImageChanged();
colorImageRGB.flagImageChanged();

415

21 Case Study: Anthropocene, an interactive film installation for Greenpeace as part of their field at Glastonbury 2013

if(preBlur) cvSmooth(depthProcessed.getCvImage(),
depthProcessed.getCvImage(), CV_BLUR , preBlur*2+1);

if(topThreshold) cvThreshold(depthProcessed.getCvImage(),
depthProcessed.getCvImage(), topThreshold * 255, 255, CV_
THRESH_TRUNC);

if(bottomThreshold) cvThreshold(depthProcessed.getCvImage(),
depthProcessed.getCvImage(), bottomThreshold * 255, 255,
CV_THRESH_TOZERO);

if(dilateBeforeErode) {
if(dilateAmount) cvDilate(depthProcessed.getCvImage(),

depthProcessed.getCvImage(), 0, dilateAmount);
if(erodeAmount) cvErode(depthProcessed.getCvImage(),

depthProcessed.getCvImage(), 0, erodeAmount);
} else {

if(erodeAmount) cvErode(depthProcessed.getCvImage(),
depthProcessed.getCvImage(), 0, erodeAmount);

if(dilateAmount) cvDilate(depthProcessed.getCvImage(),
depthProcessed.getCvImage(), 0, dilateAmount);

}
depthProcessed.flagImageChanged();

// find contours
depthContours.findContours(depthProcessed,

minBlobSize * minBlobSize *
depthProcessed.getWidth() *
depthProcessed.getHeight(),

maxBlobSize * maxBlobSize *
depthProcessed.getWidth() *
depthProcessed.getHeight(),

maxNumBlobs, findHoles,
useApproximation);

//now do the diff bits for the PAINT mode
ofxCvGrayscaleImage thresholdedDepthImageForPaint;
thresholdedDepthImageForPaint.setFromPixels(depthProcessed.getPixelsRef());
thresholdedDepthImageForPaint.resize(paintCanvas.getWidth(),

paintCanvas.getHeight());
thresholdedDepthImageForPaint.flagImageChanged();
// loop through pixels
// - add new colour pixels into canvas
unsigned char *canvasPixels = paintCanvas.getPixels();
unsigned char *diffPixels =

thresholdedDepthImageForPaint.getPixels();

int r = 255;

for(int i = 0; i < paintCanvas.width*paintCanvas.height;
i++) {
if(diffPixels[i]) {

416

21.8 Appendix 1: Code structure, main loop

//paint in the new colour if
canvasPixels[i*3] = r;
canvasPixels[i*3+1] = r;
canvasPixels[i*3+2] = r;

}else{
int greyScale = (int)(canvasPixels[i*3]*0.9f);
canvasPixels[i*3] = greyScale;
canvasPixels[i*3+1] = greyScale;
canvasPixels[i*3+2] = greyScale;

}
}
paintCanvas.blur();
paintCanvas.flagImageChanged();
paintCanvasAsOfImage.setFromPixels(paintCanvas.getPixelsRef());
paintCanvasAsOfImage.update();
flowSolver.setPyramidScale(pyramidScale);
flowSolver.setPyramidLevels(pyramidLevels);
flowSolver.setWindowSize(windowSize);
flowSolver.setExpansionArea(expansionAreaDoubleMe*2);
flowSolver.setExpansionSigma(expansionSigma);
flowSolver.setFlowFeedback(flowFeedback);
flowSolver.setGaussianFiltering(gaussianFiltering);
flowSolver.update(depthProcessed);

}

//Dirty filthy hack
if(currentMode != SLITSCANBASIC){

prevSlitScan = -1;
}
switch(currentMode){� �

see below for mode by mode update details� �
default:

break;
}

}� �� �
void testApp::draw() {

ofBackground(0, 0, 0);
ofSetColor(255, 255, 255);

switch (currentMode) {� �
see below for descriptions of various modes drawing� �

}

417

21 Case Study: Anthropocene, an interactive film installation for Greenpeace as part of their field at Glastonbury 2013

if(bShowNonTimelineGUI){
nonTimelineGUI.draw();

}

if(timeline.getIsShowing()){
ofSetColor(255, 255, 255);

//timeline
timeline.draw();

string modeString;
modeString = "Mode␣is␣";

switch (currentMode) {
case BLANK: //blank mode

modeString += "BLANK";
break;� �

edited for sanity.� �
}

ofSetColor(ofColor::red);
ofDrawBitmapString(modeString,20,100);

}
}� �
21.9 Appendix 2: Modes, with screen grabs and code

explanation

21.9.0.1 BLANK

Blank mode simply displayed a blank screen. A useful default for measuring idle per-
formance.
Mode update:� �

case BLANK: //image drawing mode
break;� �

21.9.0.2 GUI

GUI displayed several program variables and image previews of various stages of Kinect
image and blob outline processing.

418

21.9 Appendix 2: Modes, with screen grabs and code explanation

Figure 21.7: BLANK Mode

Figure 21.8: GUI Mode

419

21 Case Study: Anthropocene, an interactive film installation for Greenpeace as part of their field at Glastonbury 2013

Mode update:� �
case GUI: //GUI MODE

break;� �
Mode draw:� �

case GUI: //image drawing mode
{

ofFill();
ofSetColor(0);
ofRect(0,0,ofGetWidth(),ofGetHeight()); //draw a black

rectangle

int imageOffSet = 10;
int imageWidth = 320;
int imageHeight = 240;
int imageX = imageOffSet;

// draw everything
ofSetColor(ofColor::white);
ofEnableAlphaBlending();
flowSolver.drawColored(imageWidth, imageHeight, 10, 3);
ofDisableAlphaBlending();
ofSetColor(ofColor::royalBlue);
ofDrawBitmapString("Flow", imageX, imageOffSet);
ofSetColor(ofColor::white);
colorImageRGB.draw(imageX, imageHeight+imageOffSet,

imageWidth, imageHeight);
//greyIRSingleChannel.draw(imageX,

imageHeight+imageOffSet, imageWidth, imageHeight);
ofSetColor(ofColor::royalBlue);
ofDrawBitmapString("Kinect␣Video", imageX,

imageHeight+imageOffSet);
imageX += imageOffSet+imageWidth;
ofSetColor(ofColor::white);
kinect.drawDepth(imageX, imageHeight+imageOffSet,

imageWidth, imageHeight);
ofSetColor(ofColor::royalBlue);
ofDrawBitmapString("Kinect", imageX,

imageHeight+imageOffSet);
imageX += imageOffSet+imageWidth;
ofSetColor(ofColor::white);
maskImage.draw(imageX,imageHeight+imageOffSet,

imageWidth, imageHeight);
ofSetColor(ofColor::royalBlue);
ofDrawBitmapString("Mask", imageX,

imageHeight+imageOffSet);
imageX = imageOffSet;
ofSetColor(ofColor::white);

420

21.9 Appendix 2: Modes, with screen grabs and code explanation

depthOrig.draw(imageX,imageHeight+imageOffSet+imageHeight+imageOffSet,
imageWidth, imageHeight);

ofSetColor(ofColor::royalBlue);
ofDrawBitmapString("Original␣Depth", imageX,

imageHeight+imageOffSet+imageHeight+imageOffSet);
imageX += imageOffSet+imageWidth;
ofSetColor(ofColor::white);
depthProcessed.draw(imageX,imageHeight+imageOffSet+imageHeight+imageOffSet,

imageWidth, imageHeight);
ofSetColor(ofColor::royalBlue);
ofDrawBitmapString("Depth␣Processed", imageX,

imageHeight+imageOffSet+imageHeight+imageOffSet);
imageX += imageOffSet+imageWidth;
ofSetColor(ofColor::white);
depthContours.draw(imageX,

imageHeight+imageOffSet+imageHeight+imageOffSet,
imageWidth, imageHeight);

ofSetColor(ofColor::royalBlue);
ofDrawBitmapString("Depth␣Contours", imageX,

imageHeight+imageOffSet+imageHeight+imageOffSet);
ofSetColor(ofColor::skyBlue);
// draw instructions
stringstream reportStream;
reportStream
<< "f␣to␣fullscreen,␣g␣to␣show/hide␣timeline,␣m␣to␣

show/hide␣mouse" << endl
<< "a/s␣to␣cycle␣through␣scenes" << endl
<< "Function␣␣

Shortcut" << endl
<< "Cut␣Selection␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣

command+x" << endl
<< "Copy␣Selection␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣

command+c" << endl
<< "Paste␣Selection␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣

command+v" << endl
<< "Undo␣␣

command+z" << endl
<< "Redo␣␣

shift+command+z" << endl
<< "Select␣all␣keyframes␣in␣Focused␣track␣␣␣␣␣␣␣␣␣␣␣␣␣

command+a" << endl
<< "Add␣all␣keyframes␣in␣Focused␣track␣to␣selection␣␣␣

command+shift+a" << endl
<< "Delete␣all␣selected␣keyframes␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣

delete␣or␣backspace" << endl
<< "Nudge␣keyframes␣a␣little␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣

arrow␣keys" << endl
<< "Nudge␣keyframes␣a␣little␣more␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣

shift+arrow␣keys" << endl

421

21 Case Study: Anthropocene, an interactive film installation for Greenpeace as part of their field at Glastonbury 2013

<< "Expand␣Focused␣track␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣
alt+e" << endl

<< "Collapse␣all␣tracks␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣
alt+c" << endl

<< "Evenly␣distribute␣track␣sizes␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣
alt+shift+c" << endl

<< ",␣fps:␣" << ofGetFrameRate() << endl
<< "press␣shift␣squerty␣1-5␣&␣0␣to␣change␣the␣led␣mode"

<< endl;
ofDrawBitmapString(reportStream.str(),20,ofGetHeight()/2.f);

stringstream m;
m << "fps␣" << ofGetFrameRate() << endl
<< "pyramid␣scale:␣" << flowSolver.getPyramidScale() <<

"␣p/P" << endl
<< "pyramid␣levels:␣" << flowSolver.getPyramidLevels()

<< "␣l/L" << endl
<< "averaging␣window␣size:␣" <<

flowSolver.getWindowSize() << "␣w/W" << endl
<< "iterations␣per␣level:␣" <<

flowSolver.getIterationsPerLevel() << "␣i/I" << endl
<< "expansion␣area:␣" << flowSolver.getExpansionArea()

<< "␣a/A" << endl
<< "expansion␣sigma:␣" << flowSolver.getExpansionSigma()

<< "␣s/S" << endl
<< "flow␣feedback:␣" << flowSolver.getFlowFeedback() <<

"␣f/F" << endl
<< "gaussian␣filtering:␣" <<

flowSolver.getGaussianFiltering() << "␣g/G";

ofDrawBitmapString(m.str(), 20+320, 20);
}

break;� �
21.9.0.3 VIDEO

Video mode displayed the current frame of the unprocessed video file.

Mode update:� �
case VIDEO:

break;� �
Mode draw:� �

case VIDEO: //the film
ofFill();
ofSetColor(255);

422

21.9 Appendix 2: Modes, with screen grabs and code explanation

Figure 21.9: VIDEO Mode

timeline.getVideoPlayer("video")->draw(0, 0,
ofGetWidth(),ofGetHeight());

break;� �
21.9.0.4 VIDEOCIRCLES

VideoCircles was a direct cut and paste from the examples/video/osxHighPerformanceVideoPlayerExample.
This code was useful during initial development to discover the performance hit for
individual pixel array access. A lot of my early development during projects is based
around finding what the limits of various prospective coding functionality is - getting
to a happy mix of performance and functionality.
Mode update:� �

case VIDEOCIRCLES: //the film as circles
break;� �

Mode draw:� �
case VIDEOCIRCLES: //the film as circles

{
ofFill();
ofSetColor(0);
ofRect(0,0,ofGetWidth(),ofGetHeight()); //draw a

black rectangle

423

21 Case Study: Anthropocene, an interactive film installation for Greenpeace as part of their field at Glastonbury 2013

Figure 21.10: VIDEOCIRCLES Mode

if (timeline.getVideoPlayer("video")->isLoaded()) {
unsigned char * pixels =

timeline.getVideoPlayer("video")->getPixels();
ofPixelsRef pixelsRef =

timeline.getVideoPlayer("video")->getPixelsRef();

// let's move through the "RGB(A)" char array
// using the red pixel to control the size of a

circle.
//ofSetColor(timeline.getColor("colour"));
ofSetColor(ofColor::lightBlue);

float circleSpacing = 10.f;

float widthRatio =
ofGetWidth()/timeline.getVideoPlayer("video")->getWidth();

float heightRatio =
ofGetHeight()/timeline.getVideoPlayer("video")->getHeight();

for(int i = 0; i <
timeline.getVideoPlayer("video")->getWidth();
i+= 8){
for(int j = 0; j <

timeline.getVideoPlayer("video")->getHeight();
j+= 8){
ofColor pixelColor =

424

21.9 Appendix 2: Modes, with screen grabs and code explanation

timeline.getVideoPlayer("video")->getPixelsRef().getColor(i,
j);

int b = pixelColor.b;
float val = 1 - ((float)b / 255.0f);

//more blue in the arctic!
ofCircle(i*widthRatio, j*heightRatio,

circleSpacing * val);
}

}
}

}
break;� �

21.9.0.5 KINECTPOINTCLOUD

Figure 21.11: KINECTPOINTCLOUD Mode

Another cut and paste from addon example code, this time from the now core
ofxKinect.

Mode update:� �
case KINECTPOINTCLOUD: //draw the kinect camera depth cloud

break;� �
Mode draw:

425

21 Case Study: Anthropocene, an interactive film installation for Greenpeace as part of their field at Glastonbury 2013

� �
case KINECTPOINTCLOUD: //draw the kinect camera depth cloud

easyCam.begin();
drawPointCloud();
easyCam.end();
break;� �

21.9.0.6 SLITSCANBASIC

Figure 21.12: SLITSCANBASIC Mode

The most basic of the slitscan modes on this project - a direct port of example func-
tionality in ofxSlitscan - but with the possibility of changing the slitscan PNG source
file on the ofxTimeline GUI.

Mode update:� �
case SLITSCANBASIC: //slit scan the movie on the grey from

the kinect depth grey
{

//check slit scan...
int theCurrentSlitScan = timeline.getValue("slitscan");
if(prevSlitScan != theCurrentSlitScan){

slitScanSliderSlid(); //only update when you have
to...

prevSlitScan = theCurrentSlitScan;
}

426

21.9 Appendix 2: Modes, with screen grabs and code explanation

if(timeline.getVideoPlayer("video")->isFrameNew()){
slitScan.addImage(timeline.getVideoPlayer("video")->getPixelsRef());

}
}

break;� �
Mode draw:� �

case SLITSCANBASIC: //slit scan the movie on depth png
slitScan.getOutputImage().draw(0, 0, ofGetWidth(),

ofGetHeight());

//white fur
ofEnableAlphaBlending();
flowSolver.drawGrey(ofGetWidth(),ofGetHeight(), 10, 3);
ofDisableAlphaBlending();

break;� �
21.9.0.7 SLITSCANKINECTDEPTHGREY

Figure 21.13: SLITSCANKINECTDEPTHGREY Mode

The most basic of novel slitscan modes developed for this project - feeding the Kinect
depth image into ofxSlitscan on a per frame basis - once I realised this would still
result in interactive frame rates I knew the project would succeed.

427

21 Case Study: Anthropocene, an interactive film installation for Greenpeace as part of their field at Glastonbury 2013

Mode update:� �
case SLITSCANKINECTDEPTHGREY: //slit scan the movie on the

grey from the kinect depth grey
{

if(timeline.getVideoPlayer("video")->isFrameNew()){
//kinect slitscan
//depthPixels.setFromPixels(kinect.getDepthPixelsRef());
depthPixels.setFromPixels(depthProcessed.getPixelsRef());
depthPixels.resize(timeline.getVideoPlayer("video")->getWidth(),

timeline.getVideoPlayer("video")->getHeight());
//

slitScanDepthGrey.setDelayMap(depthPixels);
//

slitScanDepthGrey.addImage(timeline.getVideoPlayer("video")->getPixelsRef());
slitScan.setDelayMap(depthPixels);
slitScan.addImage(timeline.getVideoPlayer("video")->getPixelsRef());

}
}

break;� �
Mode draw:� �

case SLITSCANKINECTDEPTHGREY: //slit scan the movie on the
grey from the kinect depth grey
slitScan.getOutputImage().draw(0, 0, ofGetWidth(),

ofGetHeight());
//slitScanDepthGrey.getOutputImage().draw(0, 0,

ofGetWidth(), ofGetHeight());
break;� �

21.9.0.8 SPARKLE

An experiment with using previously developed Somantics functionality into ofxTime-
line.

Mode update:� �
case SPARKLE: //sparkles on the slitscan
{

//update the sparkles come what may...
someSparkles.update(&depthContours);
someSparkles.draw(ofColor::white);
//someSparkles.draw(timeline.getColor("colour"));

ofImage distortionMap;
distortionMap.allocate(someSparkles.theFBO.getWidth(),

someSparkles.theFBO.getHeight(), OF_IMAGE_COLOR);

428

21.9 Appendix 2: Modes, with screen grabs and code explanation

Figure 21.14: SPARKLE Mode

someSparkles.theFBO.readToPixels(distortionMap.getPixelsRef());

distortionMap.resize(timeline.getVideoPlayer("video")->getWidth(),
timeline.getVideoPlayer("video")->getHeight());

slitScan.setDelayMap(distortionMap);

if(timeline.getVideoPlayer("video")->isFrameNew()){
slitScan.addImage(timeline.getVideoPlayer("video")->getPixelsRef());

}
}

break;� �
Mode draw:� �

case SPARKLE:
//do some sparkles - used the slit scan to hold it....
slitScan.getOutputImage().draw(0, 0, ofGetWidth(),

ofGetHeight());
//ofSetColor(255,255,255);
//someSparkles.theFBO.draw(0, 0, ofGetWidth(),

ofGetHeight());
break;� �

429

21 Case Study: Anthropocene, an interactive film installation for Greenpeace as part of their field at Glastonbury 2013

21.9.0.9 VERTICALMIRROR

Figure 21.15: VERTICALMIRROR Mode

A vertical mirror on the video playback - again ported directly from Somantics.

Mode update:� �
case VERTICALMIRROR: //vertical mirror
{

if(timeline.getVideoPlayer("video")->isFrameNew()){
verticalMirrorImage.setFromPixels(timeline.getVideoPlayer("video")->getPixels(),

verticalMirrorImage.getWidth(),
verticalMirrorImage.getHeight());

verticalMirrorImage.updateTexture();
}

}
break;� �

Mode draw:� �
case VERTICALMIRROR:
{

bool usingNormTexCoords =
ofGetUsingNormalizedTexCoords();

if(!usingNormTexCoords) {
ofEnableNormalizedTexCoords();

430

21.9 Appendix 2: Modes, with screen grabs and code explanation

}

verticalMirrorImage.getTextureReference().bind();

ofMesh mesh;
mesh.clear();
mesh.addVertex(ofVec3f(0, 0));
mesh.addVertex(ofVec3f(0, ofGetHeight()));
mesh.addVertex(ofVec3f(ofGetWidth()/2, 0));
mesh.addVertex(ofVec3f(ofGetWidth()/2, ofGetHeight()));
mesh.addVertex(ofVec3f(ofGetWidth(), 0));
mesh.addVertex(ofVec3f(ofGetWidth(), ofGetHeight()));

mesh.addTexCoord(ofVec2f(0.25, 0.0));
mesh.addTexCoord(ofVec2f(0.25, 1.0));
mesh.addTexCoord(ofVec2f(0.75, 0.0));
mesh.addTexCoord(ofVec2f(0.75, 1.0));
mesh.addTexCoord(ofVec2f(0.25, 0.0));
mesh.addTexCoord(ofVec2f(0.25, 1.0));

mesh.setMode(OF_PRIMITIVE_TRIANGLE_STRIP);
ofSetColor(ofColor::white);
mesh.draw();

verticalMirrorImage.getTextureReference().unbind();

// pop normalized tex coords
if(!usingNormTexCoords) {

ofDisableNormalizedTexCoords();
}

//white fur
ofEnableAlphaBlending();
flowSolver.drawGrey(ofGetWidth(),ofGetHeight(), 10, 3);
ofDisableAlphaBlending();

}
break;� �

21.9.0.10 HORIZONTALMIRROR

A horizontal mirror on the video playback - again ported directly from Somantics.

Mode update:� �
case HORIZONTALMIRROR: //HORIZONTALMIRROR mirror
{

if(timeline.getVideoPlayer("video")->isFrameNew()){

431

21 Case Study: Anthropocene, an interactive film installation for Greenpeace as part of their field at Glastonbury 2013

Figure 21.16: HORIZONTALMIRROR Mode

horizontalMirrorImage.setFromPixels(timeline.getVideoPlayer("video")->getPixels(),
horizontalMirrorImage.getWidth(),
horizontalMirrorImage.getHeight());

horizontalMirrorImage.updateTexture();
}

}
break;� �

Mode draw:� �
case HORIZONTALMIRROR:
{

bool usingNormTexCoords =
ofGetUsingNormalizedTexCoords();

if(!usingNormTexCoords) {
ofEnableNormalizedTexCoords();

}

horizontalMirrorImage.getTextureReference().bind();

ofMesh mesh;
mesh.clear();
mesh.addVertex(ofVec3f(ofGetWidth(), 0));
mesh.addVertex(ofVec3f(0, 0));

432

21.9 Appendix 2: Modes, with screen grabs and code explanation

mesh.addVertex(ofVec3f(ofGetWidth(), ofGetHeight()/2));
mesh.addVertex(ofVec3f(0, ofGetHeight()/2));
mesh.addVertex(ofVec3f(ofGetWidth(), ofGetHeight()));
mesh.addVertex(ofVec3f(0,ofGetHeight()));

mesh.addTexCoord(ofVec2f(1.0, 0.25));
mesh.addTexCoord(ofVec2f(0.0, 0.25));
mesh.addTexCoord(ofVec2f(1.0, 0.75));
mesh.addTexCoord(ofVec2f(0.0, 0.75));
mesh.addTexCoord(ofVec2f(1.0, 0.25));
mesh.addTexCoord(ofVec2f(0.0, 0.25));

mesh.setMode(OF_PRIMITIVE_TRIANGLE_STRIP);
ofSetColor(ofColor::white);
mesh.draw();

horizontalMirrorImage.getTextureReference().unbind();

// pop normalized tex coords
if(!usingNormTexCoords) {

ofDisableNormalizedTexCoords();
}

//white fur
ofEnableAlphaBlending();
flowSolver.drawGrey(ofGetWidth(),ofGetHeight(), 10, 3);
ofDisableAlphaBlending();

}
break;� �

21.9.0.11 KALEIDOSCOPE

A Kaleidoscope mirror on the video playback - again ported directly from Somantics,
using Marek Bereza’s⁴² logic.

Mode update:� �
case KALEIDOSCOPE: //kaleidsocope
{

if(timeline.getVideoPlayer("video")->isFrameNew()){
kaleidoscopeMirrorImage.setFromPixels(timeline.getVideoPlayer("video")->getPixels(),

kaleidoscopeMirrorImage.getWidth(),
kaleidoscopeMirrorImage.getHeight());

kaleidoscopeMirrorImage.updateTexture();
}

⁴²http://mazbox.com/

433

http://mazbox.com/

21 Case Study: Anthropocene, an interactive film installation for Greenpeace as part of their field at Glastonbury 2013

Figure 21.17: KALEIDOSCOPE Mode

}
break;� �

Mode draw:� �
case KALEIDOSCOPE:
{

bool usingNormTexCoords =
ofGetUsingNormalizedTexCoords();

if(!usingNormTexCoords) {
ofEnableNormalizedTexCoords();

}

kaleidoscopeMirrorImage.getTextureReference().bind();

int star = ((int)timeline.getValue("star")*2);//8; //get
star from the timeline gui, but multiply by 2 to get
to always even

float offset = timeline.getValue("offset");//0.5f; //
get offset from the timeline gui

float angle = 360.f/star; //8 sides to start

ofMesh mesh;

434

21.9 Appendix 2: Modes, with screen grabs and code explanation

ofVec3f vec(0,0,0);
mesh.addVertex(vec);
vec.x += ofGetHeight()/2;

for(int i = 0; i < star; i++) {
mesh.addVertex(vec);
vec.rotate(angle, ofVec3f(0,0,1));

}

// close the loop
mesh.addVertex(vec);

// now work out the texcoords
/*__________________

| \ / |
| \ / |
| \ / |
| \ / |
| \/ |
+----------------+

A v shape out of the centre of the camera texture
*/

float realOffset = 0.5;
// normalized distance from the centre (half the width

of the above 'V')
float dist =

ABS((float)kaleidoscopeMirrorImage.getHeight()*tan(ofDegToRad(angle)*0.5))/(float)kaleidoscopeMirrorImage.getHeight();

// the realOffset is where the (normalized) middle of
the 'V' is on the x-axis

realOffset = ofMap(offset, 0, 1, dist, 1-dist);

// this is the point at the bottom of the triangle - our
centre for the triangle fan

mesh.addTexCoord(ofVec2f(realOffset, 1));

ofVec2f ta(realOffset-dist, 0);
ofVec2f tb(realOffset+dist, 0);

435

21 Case Study: Anthropocene, an interactive film installation for Greenpeace as part of their field at Glastonbury 2013

for(int i = 0; i <= star; i++) {
if(i%2==0) {

mesh.addTexCoord(ta);
} else {

mesh.addTexCoord(tb);
}

}

glPushMatrix();
glTranslatef(ofGetWidth()/2, ofGetHeight()/2, 0);
mesh.setMode(OF_PRIMITIVE_TRIANGLE_FAN);
mesh.draw();
glPopMatrix();

kaleidoscopeMirrorImage.getTextureReference().unbind();

// pop normalized tex coords
if(!usingNormTexCoords) {

ofDisableNormalizedTexCoords();
}

//white fur
ofEnableAlphaBlending();
flowSolver.drawGrey(ofGetWidth(),ofGetHeight(), 10, 3);
ofDisableAlphaBlending();

}
break;� �

21.9.0.12 COLOURFUR

A direct port of Tim Scaffidi’s ofxOpticalFlowFarneback⁴³ demo code.

Mode update:� �
case COLOURFUR: //COLOURFUR
{
}

break;� �
Mode draw:� �

case COLOURFUR:
{

ofSetColor(ofColor::white);

⁴³https://github.com/timscaffidi/ofxOpticalFlowFarneback

436

https://github.com/timscaffidi/ofxOpticalFlowFarneback

21.9 Appendix 2: Modes, with screen grabs and code explanation

Figure 21.18: COLOURFUR Mode

timeline.getVideoPlayer("video")->draw(0, 0,
ofGetWidth(),ofGetHeight());

ofEnableAlphaBlending();
flowSolver.drawColored(ofGetWidth(),ofGetHeight(), 10,

3);
ofDisableAlphaBlending();

}
break;� �

21.9.0.13 DEPTH

A simple mode to display the depth image directly - useful for debugging when onsite.

Mode update:� �
case DEPTH: //DEPTH
{
}� �

Mode draw:� �
case DEPTH:
{

depthProcessed.draw(0,0,ofGetWidth(), ofGetHeight());
}

437

21 Case Study: Anthropocene, an interactive film installation for Greenpeace as part of their field at Glastonbury 2013

Figure 21.19: DEPTH Mode

break;� �
21.9.0.14 SHATTER

A direct port of Todd Vanderlin’s⁴⁴ code that he wrote for the Feedback project, but
using it as live delay map input to the Slitscan.

Mode update:� �
case SHATTER:
{

//update the shatter
theShatter.update(&depthContours);
theShatter.draw(ofColor::white);

ofImage distortionMap;
distortionMap.allocate(theShatter.theFBO.getWidth(),

theShatter.theFBO.getHeight(), OF_IMAGE_COLOR);

theShatter.theFBO.readToPixels(distortionMap.getPixelsRef());

distortionMap.resize(timeline.getVideoPlayer("video")->getWidth(),
timeline.getVideoPlayer("video")->getHeight());

⁴⁴http://vanderlin.cc/projects/feedback/

438

http://vanderlin.cc/projects/feedback/

21.9 Appendix 2: Modes, with screen grabs and code explanation

Figure 21.20: SHATTER Mode

slitScan.setDelayMap(distortionMap);

if(timeline.getVideoPlayer("video")->isFrameNew()){
slitScan.addImage(timeline.getVideoPlayer("video")->getPixelsRef());

}
}

break;� �
Mode draw:

� �
case SHATTER:
{

//do some shattering - used the slit scan to hold it....
slitScan.getOutputImage().draw(0, 0, ofGetWidth(),

ofGetHeight());
//ofSetColor(255,255,255);
//theShatter.theFBO.draw(0, 0, ofGetWidth(),

ofGetHeight());
}

break;� �

439

21 Case Study: Anthropocene, an interactive film installation for Greenpeace as part of their field at Glastonbury 2013

Figure 21.21: SELFSLITSCAN Mode

21.9.0.15 SELFSLITSCAN

Feeding the greyscale image of the current film frame back into the SlitScan delay map
made for some interesting feedback effects.

Mode update:� �
case SELFSLITSCAN:
{

if(timeline.getVideoPlayer("video")->isFrameNew()){
//self slitscan

// ofImage selfSlitScanDelayMap;
//

selfSlitScanDelayMap.allocate(timeline.getVideoPlayer("video")->getWidth(),
timeline.getVideoPlayer("video")->getHeight(), OF_IMAGE_COLOR);

//
selfSlitScanDelayMap.setFromPixels(timeline.getVideoPlayer("video")->getPixelsRef());

slitScan.setDelayMap(timeline.getVideoPlayer("video")->getPixelsRef());
slitScan.addImage(timeline.getVideoPlayer("video")->getPixelsRef());

}
}

break;� �
Mode draw:� �

case SELFSLITSCAN:

440

21.9 Appendix 2: Modes, with screen grabs and code explanation

{
//do some SELFSLITSCAN - used the slit scan to hold

it....
ofSetColor(255,255,255);
slitScan.getOutputImage().draw(0, 0, ofGetWidth(),

ofGetHeight());
}

break;� �
21.9.0.16 SPIKYBLOBSLITSCAN

Figure 21.22: SPIKYBLOBSLITSCAN Mode

Feeding the Spiked blob outline back into the SlitScan delay map.

Mode update:� �
case SPIKYBLOBSLITSCAN:
{

//SPIKYBLOBSLITSCAN
//update the spikes come what may...
theSpikey.update(&depthContours);
theSpikey.draw(ofColor::white);

ofImage distortionMap;
distortionMap.allocate(theSpikey.theFBO.getWidth(),

theSpikey.theFBO.getHeight(), OF_IMAGE_COLOR);

441

21 Case Study: Anthropocene, an interactive film installation for Greenpeace as part of their field at Glastonbury 2013

theSpikey.theFBO.readToPixels(distortionMap.getPixelsRef());

distortionMap.resize(timeline.getVideoPlayer("video")->getWidth(),
timeline.getVideoPlayer("video")->getHeight());

slitScan.setDelayMap(distortionMap);

if(timeline.getVideoPlayer("video")->isFrameNew()){
slitScan.addImage(timeline.getVideoPlayer("video")->getPixelsRef());

}
}� �

Mode draw:� �
case SPIKYBLOBSLITSCAN:
{

//do some SPIKYBLOBSLITSCAN - used the slit scan to hold
it....

ofSetColor(255,255,255);
slitScan.getOutputImage().draw(0, 0, ofGetWidth(),

ofGetHeight());
//theSpikey.theFBO.draw(0,0,ofGetWidth(), ofGetHeight());

}
break;� �

21.9.0.17 MIRRORKALEIDOSCOPE

Combining Mirror and Kaleidoscope modes.
Mode update:� �

case MIRRORKALEIDOSCOPE: //MIRRORKALEIDOSCOPE mirror
{

if(timeline.getVideoPlayer("video")->isFrameNew()){
verticalMirrorImage.setFromPixels(timeline.getVideoPlayer("video")->getPixels(),

verticalMirrorImage.getWidth(),
verticalMirrorImage.getHeight());

verticalMirrorImage.updateTexture();

kaleidoscopeMirrorImage.setFromPixels(timeline.getVideoPlayer("video")->getPixels(),
kaleidoscopeMirrorImage.getWidth(),
kaleidoscopeMirrorImage.getHeight());

kaleidoscopeMirrorImage.updateTexture();
}

}
break;� �

442

21.9 Appendix 2: Modes, with screen grabs and code explanation

Figure 21.23: MIRRORKALEIDOSCOPE Mode

Mode draw:� �
case MIRRORKALEIDOSCOPE:
{

bool usingNormTexCoords =
ofGetUsingNormalizedTexCoords();

if(!usingNormTexCoords) {
ofEnableNormalizedTexCoords();

}

verticalMirrorImage.getTextureReference().bind();

ofMesh mirrorMesh;
mirrorMesh.clear();
mirrorMesh.addVertex(ofVec3f(0, 0));
mirrorMesh.addVertex(ofVec3f(0, ofGetHeight()));
mirrorMesh.addVertex(ofVec3f(ofGetWidth()/2, 0));
mirrorMesh.addVertex(ofVec3f(ofGetWidth()/2,

ofGetHeight()));
mirrorMesh.addVertex(ofVec3f(ofGetWidth(), 0));
mirrorMesh.addVertex(ofVec3f(ofGetWidth(),

ofGetHeight()));

mirrorMesh.addTexCoord(ofVec2f(0.25, 0.0));
mirrorMesh.addTexCoord(ofVec2f(0.25, 1.0));

443

21 Case Study: Anthropocene, an interactive film installation for Greenpeace as part of their field at Glastonbury 2013

mirrorMesh.addTexCoord(ofVec2f(0.75, 0.0));
mirrorMesh.addTexCoord(ofVec2f(0.75, 1.0));
mirrorMesh.addTexCoord(ofVec2f(0.25, 0.0));
mirrorMesh.addTexCoord(ofVec2f(0.25, 1.0));

mirrorMesh.setMode(OF_PRIMITIVE_TRIANGLE_STRIP);
ofSetColor(ofColor::white);
mirrorMesh.draw();

verticalMirrorImage.getTextureReference().unbind();

kaleidoscopeMirrorImage.getTextureReference().bind();

int star = ((int)timeline.getValue("star")*2);//8; //get
star from the timeline gui, but multiply by 2 to get
to always even

float offset = timeline.getValue("offset");//0.5f; //
get offset from the timeline gui

float angle = 360.f/star; //8 sides to start

ofMesh mesh;

ofVec3f vec(0,0,0);
mesh.addVertex(vec);
vec.x += ofGetHeight()/2;

for(int i = 0; i < star; i++) {
mesh.addVertex(vec);
vec.rotate(angle, ofVec3f(0,0,1));

}

// close the loop
mesh.addVertex(vec);

// now work out the texcoords
/*__________________

| \ / |
| \ / |
| \ / |
| \ / |
| \/ |
+----------------+

A v shape out of the centre of the camera texture
*/

float realOffset = 0.5;
// normalized distance from the centre (half the width

444

21.9 Appendix 2: Modes, with screen grabs and code explanation

of the above 'V')
float dist =

ABS((float)kaleidoscopeMirrorImage.getHeight()*tan(ofDegToRad(angle)*0.5))/(float)kaleidoscopeMirrorImage.getHeight();

// the realOffset is where the (normalized) middle of
the 'V' is on the x-axis

realOffset = ofMap(offset, 0, 1, dist, 1-dist);

// this is the point at the bottom of the triangle - our
centre for the triangle fan

mesh.addTexCoord(ofVec2f(realOffset, 1));

ofVec2f ta(realOffset-dist, 0);
ofVec2f tb(realOffset+dist, 0);
for(int i = 0; i <= star; i++) {

if(i%2==0) {
mesh.addTexCoord(ta);

} else {
mesh.addTexCoord(tb);

}
}

glPushMatrix();
glTranslatef(ofGetWidth()/2, ofGetHeight()/2, 0);
mesh.setMode(OF_PRIMITIVE_TRIANGLE_FAN);
mesh.draw();
glPopMatrix();

kaleidoscopeMirrorImage.getTextureReference().unbind();

// pop normalized tex coords
if(!usingNormTexCoords) {

ofDisableNormalizedTexCoords();
}

//white fur
ofEnableAlphaBlending();
flowSolver.drawGrey(ofGetWidth(),ofGetHeight(), 10, 3);
ofDisableAlphaBlending();

}
break;� �

21.9.0.18 PARTICLES

Using Somantics particle functionality as a SlitScan delay map.

Mode update:

445

21 Case Study: Anthropocene, an interactive film installation for Greenpeace as part of their field at Glastonbury 2013

Figure 21.24: PARTICLES Mode

� �
case PARTICLES:
{

//PARTICLES
theParticles.update(&depthContours);
theParticles.draw(ofColor::white);
ofImage distortionMap;
distortionMap.allocate(theParticles.theFBO.getWidth(),

theParticles.theFBO.getHeight(), OF_IMAGE_COLOR);
theParticles.theFBO.readToPixels(distortionMap.getPixelsRef());
distortionMap.resize(timeline.getVideoPlayer("video")->getWidth(),

timeline.getVideoPlayer("video")->getHeight());
slitScan.setDelayMap(distortionMap);
if(timeline.getVideoPlayer("video")->isFrameNew()){

slitScan.addImage(timeline.getVideoPlayer("video")->getPixelsRef());
}

}
break;� �

Mode draw:� �
case PARTICLES:
{

//do some PARTICLES - used the slit scan to hold it....
ofSetColor(255,255,255);
slitScan.getOutputImage().draw(0, 0, ofGetWidth(),

ofGetHeight());

446

21.9 Appendix 2: Modes, with screen grabs and code explanation

//theParticles.theFBO.draw(0,0,ofGetWidth(),
ofGetHeight());

}
break;� �

21.9.0.19 WHITEFUR

Figure 21.25: WHITEFUR Mode

Turning the ofxOpticalFlowFarneback demo code, but making the graphical output
monochrome.

Mode update:� �
case WHITEFUR: //WHITEFUR, nowt
{
}

break;� �
Mode draw:� �

case WHITEFUR:
{

ofSetColor(ofColor::white);
timeline.getVideoPlayer("video")->draw(0, 0,

ofGetWidth(),ofGetHeight());
ofEnableAlphaBlending();

447

21 Case Study: Anthropocene, an interactive film installation for Greenpeace as part of their field at Glastonbury 2013

flowSolver.drawGrey(ofGetWidth(),ofGetHeight(), 10, 3);
ofDisableAlphaBlending();

}
break;� �

21.9.0.20 PAINT

Figure 21.26: PAINT Mode

Porting the Paint mode from Somantics as a delay map.

Mode update:� �
case PAINT: //body painting diff
{

slitScan.setDelayMap(paintCanvasAsOfImage);
if(timeline.getVideoPlayer("video")->isFrameNew()){

slitScan.addImage(timeline.getVideoPlayer("video")->getPixelsRef());
}

}
break;� �

Mode draw:� �
case PAINT:
{

//do some paint - used the slit scan to hold it....

448

21.10 Appendix 3: Edited development notes

slitScan.getOutputImage().draw(0, 0, ofGetWidth(),
ofGetHeight());

}
break;� �

21.10 Appendix 3: Edited development notes

21.10.0.21 29th May 2013

oF/of_v0.7.4_osx_release/apps/ofxKinect-demos

Also downloaded ofxKinect. Get gui working first, with ofxKinect, then start on:

• https://github.com/toruurakawa/ofxFakeMotionBlur
• Don’t use, use jamezilla https://github.com/kylemcdonald/ofxBlur
• https://github.com/jamezilla/ofxBlurShader
• https://github.com/kylemcdonald/ofxCameraFilter
• https://github.com/vanderlin/ofxBox2d
• https://github.com/NickHardeman/ofxBullet
• https://github.com/fishkingsin/ofxPBOVideoPlayer
• https://github.com/arturoc/ofxPlaymodes
• Don’t use, in core now https://github.com/Flightphase/ofxQTKitVideoPlayer
• https://github.com/after12am/ofxTLGlitch
• https://github.com/bakercp/ofxVideoBuffer
• https://github.com/bakercp/ofxVideoUtils
• https://github.com/obviousjim/ofxSlitScan

Doing gui - having to make the projectGenerator to make the projects, generating the
examples now…. Recopy over examples after! Did it, just copying in the empty example
xcode project, all in here now:

oF/of_v0.7.4_osx_release/examples/gui

Email of notes on development:

On 29 May 2013, at 20:44, Joel Gethin Lewis wrote:

• All ofFloatColor or ofFloatImages
• HSB blob shifts as a mode - crazy colours, also try whole image on slow change
using ofmath demos

• Blobs cracking off
• Just blackness on blob
• Slit scan obvs

449

21 Case Study: Anthropocene, an interactive film installation for Greenpeace as part of their field at Glastonbury 2013

• ofxbox2d? Kinect demos? Look at memos
• Look at ofxaddons for time ones
• Use ofGui official one
• Have different GUI panes per constructor for ofxScenes (make that)

Think in addon way - indeed that every scene might have addons inside it. That’s the
way the should be. Addons inside scenes. Scenes are subclasses of ofxScene. Draw it
out. Start with slitscan as first scene. Just get that working then use that as basis for
ofxScene. Pragmatic! Will need central image creator as input for each scene. Kinect
in this case. Don’t worry about that for now.

ofparameter is missing! Looking at old OF folder from other project: openFrameworks-
develop/apps/devApps/projectGenerator, looking in there in the oF project to try to
find what is going on…

openFrameworks-develop/libs/openFrameworks/types contains:

• ofBaseTypes.cpp
• ofBaseTypes.h
• ofColor.cpp
• ofColor.h
• ofParameter.cpp
• ofParameter.h
• ofParameterGroup.cpp
• ofParameterGroup.h
• ofPoint.cpp
• ofPoint.h
• ofRectangle.cpp
• ofRectangle.h
• ofTypes.h

looking for ofpanel

openFrameworks-develop/addons/ofxGui/src

is where it is…opening:

oF/of_v0.7.4_osx_release/examples/gui/guiExample

again, just trying to add it in, in the addon… Nooo thats bad.. should use the develop
version… space is low…now working here:

oF/openFrameworks-develop/apps/devApps/projectGenerator

trying to build that and run it, had to select the root oF folder, it was defaulting to a
weird one, so selected:

oF/openFrameworks-develop

450

21.10 Appendix 3: Edited development notes

seems to be working, leaving it for a bit…

error ofFile::copyFromTo source file/folder doesn’t exist: oF/openFrameworks-
develop/scripts/osx/template/emptyExample.xcodeproj/xcshareddata/WorkspaceSettings.xcsettings

is the error….it’s correct:

oF/openFrameworks-develop/scripts/osx/template/emptyExample.xcodeproj/xcshareddata

doesn’t have it

openFrameworks-develop/apps/devApps/projectGenerator/bin/data/xcode/template/emptyExample.xcodeproj/xcshareddata

copied that in, and another file inside

openFrameworks-develop/apps/devApps/projectGenerator/bin/data/xcode/template/emptyExample.xcodeproj/xcshareddata/xcschemes

xcschememanagement.plist

as well…so trying to generate again…seems to be working now……won’t paste in the log!
(-; trying this now…

oF/openFrameworks-develop/examples/gui/guiExample

nice!

oF/openFrameworks-develop/examples/gui/guiFromParametersExample

next - not that interesting…

oscParametersReceiver oscParametersSender

together… Neat demo! synchronised gui controls….both crash on exit

sender:� �
void testApp::setup(){

parameters.setName("parameters");
parameters.add(size.set("size",10,1,100));
parameters.add(number.set("number",10,1,100));
parameters.add(check.set("check",false));
parameters.add(color.set("color",ofColor(127),ofColor(0,0),ofColor(255)));
gui.setup(parameters);
// by now needs to pass the gui parameter groups since the panel

internally creates it's own group
sync.setup((ofParameterGroup&)gui.getParameter(),6667,"localhost",6666);
ofSetVerticalSync(true);

}

void testApp::update(){
sync.update();

}� �
receiver:

451

21 Case Study: Anthropocene, an interactive film installation for Greenpeace as part of their field at Glastonbury 2013

� �
void testApp::setup(){

parameters.setName("parameters");
parameters.add(size.set("size",10,0,100));
parameters.add(number.set("number",10,0,100));
parameters.add(check.set("check",false));
parameters.add(color.set("color",ofColor(127),ofColor(0,0),ofColor(255)));
gui.setup(parameters);
// by now needs to pass the gui parameter groups since the panel

internally creates it's own group
sync.setup((ofParameterGroup&)gui.getParameter(),6666,"localhost",6667);
ofSetVerticalSync(true);

}

void testApp::update(){
sync.update();

}

void testApp::draw(){
gui.draw();
ofSetColor(color);
for(int i=0;i<number;i++){

ofCircle(ofGetWidth()*.5-size*((number-1)*0.5-i),
ofGetHeight()*.5, size);

}
}� �
subtle difference in port lines in sync setups…

oF/openFrameworks-develop/examples/gui/parameterEdgeCasesExample

doesn’t work…

oF/openFrameworks-develop/examples/gui/parameterGroupExample

Is very intersting - two renderers running at once! Only thing missing is multiple param-
eters, and images being drawn? could always do that with bools, and the images being
displayed on top, sliders and the like could work with that too… Moving big greenpeace
video into:

oF/openFrameworks-develop/examples/video/osxHighPerformanceVideoPlayerExample/bin/data/movies

to save space, rather than copying!

oF/openFrameworks-develop/examples/video/osxHighPerformanceVideoPlayerExample

Trying this now…builds with standard movie file in demo, fingers.mov. Now trying,
Greenpeace.m4v - works great! audio back too…and pixel access! MOVED video file
out of the folder for safety..

copied in this:

452

21.10 Appendix 3: Edited development notes

oF/openFrameworks-develop/apps/ofxKinect-demos

trying normal ofxKinect first…

oF/openFrameworks-develop/addons/ofxKinect oF/openFrameworks-develop/addons/ofxKinect/example

trying that… works fine, with motor and everything…so making a mega mix up of:

ofxKinect, ofxGUI and ofHighPerformanceVideo demo

oF/openFrameworks-develop/apps/HAndLGreenpeace/001fromofxKinectExampleAndofxGUI/bin/data/movies

copied that in, changed name to:

oF/openFrameworks-develop/apps/HAndLGreenpeace/001fromofxKinectExampleAndofxGUIAndHighPerformanceVideo

oF/openFrameworks-develop/examples/video/osxHighPerformanceVideoPlayerExample
oF/openFrameworks-develop/examples/gui/guiExample

copying over gui data…that works with gui.. now lets try with high performance
video…all works! nice debug screen! saved it out to making of….

Figure 21.27: Kinect, GUI and High Performance Video Debug Screen

21.10.0.22 30th May 2013

Doing modes, tidying up gui, need to do more on gui tidy up and keys. Made:

oF/openFrameworks-develop/apps/HAndLGreenpeace/002FirstModesAndSlitScan

453

21 Case Study: Anthropocene, an interactive film installation for Greenpeace as part of their field at Glastonbury 2013

Builds (-; Pixel drawing is messed up, checking the original high perf demo. Recoded
nicely with bits that made sense and were easier to understand…now slitsan! fixed a
few gui bugs…

oF/openFrameworks-develop/addons/ofxSlitScan

Made that… Image is PNG RGB for slitscan delay map, so kinect depth map is good for
that… right? (-; lucky birthday boy! works great…did grab..

Figure 21.28: Slit scan generated from Kinect Depth Map Slice

21.10.0.23 31st May 2013

Showed Pete, performance better on his laptop, no optimisation yet, tried out some
maps with bafic…

21.10.0.24 6th June 2013

First lets do GUI that corresponds to big maps, so we can switch between them… Du-
plicating multicoloured magic into the folder, so got all that lovely code to work with..
After lunch lets look at mirror Somantics code… Too complicated for now, need some
time to sit down and make it work… For now on the Virgin SA flight, lets try some of the
addons!

ofxBlur By Kyle McDonald had to add accelerate, qtkit and corevideo frameworks to
make it work..

454

21.10 Appendix 3: Edited development notes

ofxBlurShader This is a very lightly refactored version of Kyle McDonald’s ofBlur exam-
ple (https://github.com/kylemcdonald/SubdivisionOfRoam/tree/master/GaussianBlur).
It hasbeen updated to OF 007. Didn’t build!

ofxBox2d trying every example:

• oF/openFrameworks-develop/addons/ofxBox2d/ComplexPolgonExample - use-
ful for making shatter like effects - how do I texture them?

• oF/openFrameworks-develop/addons/ofxBox2d/ContactListenerExample - use-
ful for tiggering audio samples on ofxBox2D interactions

• oF/openFrameworks-develop/addons/ofxBox2d/CustomDataExample - useful
for storing data withing objects, nothing particularly useful there for us at the
moment..

• oF/openFrameworks-develop/addons/ofxBox2d/ForcesExample - bunch of
forces on mouse action

• oF/openFrameworks-develop/addons/ofxBox2d/JointExample -long chain of
pieces

• oF/openFrameworks-develop/addons/ofxBox2d/ofxBox2dExample - line that you
can draw and lots of various shapes

• oF/openFrameworks-develop/addons/ofxBox2d/PolygonExample - more line
drawing…

• oF/openFrameworks-develop/addons/ofxBox2d/SimpleExample - simple!

ofxBullet

• oF/openFrameworks-develop/addons/ofxBullet/SimpleExample - is simple, sev-
eral different basic shapes…

• oF/openFrameworks-develop/addons/ofxBullet/CustomShapesExample - needs
ofxAssimpMeshHelper - that is in the assimpmodel loader addon… cool - very fast
simulation and * loading of custom shapes - perhaps pete could make custom
3D shapes?

• oF/openFrameworks-develop/addons/ofxBullet/EventsExample - smashing of
objects into each other, mouse animation of objects within cube

• oF/openFrameworks-develop/addons/ofxBullet/JointsExample - has long chain
of shapes, similar to ofxbox2d example…

ofxCameraFilter

• oF/openFrameworks-develop/addons/ofxCameraFilter/example-graphics - sim-
ple camera effects on some rotating shapes, aberation and the like…

• oF/openFrameworks-develop/addons/ofxCameraFilter/example-live - does the
same but live, and with an interesting use of an ofMesh

ofxFakeMotionBlur

• oF/openFrameworks-develop/addons/ofxFakeMotionBlur/example - no work

455

21 Case Study: Anthropocene, an interactive film installation for Greenpeace as part of their field at Glastonbury 2013

ofxPBOVideoPlayer

• oF/openFrameworks-develop/addons/ofxPBOVideoPlayer/example - seems
speedy

ofxPlaymodes

• oF/openFrameworks-develop/addons/ofxPlaymodes/example-pmAV - needs
more addons, come back to this..

ofxTLGlitch

• trying oF/openFrameworks-develop/addons/ofxVideoBuffer/example-multi-tap -
had to add empty example, couldn’t get building….

DONE addon off….

21.10.0.25 12th June 2013

Greenpeace logos look nice as slit scans! saved all graphics and fonts into:

2013_06_12_Font 2013_06_12_GreenpeaceLogos

Pete gave me new audio and the film for working with duration

21.10.0.26 13th June 2013

Duration demo is up from James George too:

• Posted demo code from Duration.cc demo github.com/obviousjim/Dur… cc @JGL

got that, put it here:

2013_06_13_obviousJimAudioReactiveRing

and copied into:

OF/openFrameworks-develop/apps/jamesGeorgeDurationDemo/DurationAudioReactiveRing-
master

made:

Duration_004_OSX Duration_004_OSX.zip durationData

too.. The readme sez:� �
Duration: Timeline for Creative Code Demonstration

Code used in the demo of Duration:

456

21.10 Appendix 3: Edited development notes

http://vimeo.com/59654979

Requires ofxRange and ofxDuration
https://github.com/YCAMInterlab/ofxDuration
https://github.com/Flightphase/ofxRange

Download Duration
http://www.duration.cc/ // https://github.com/YCAMInterlab/Duration

Supported by YCAM InterLab Guest Research Project 2012� �
Getting those.. put in here:

2013_06_13_MoreDurationBits

ofxRange-master.zip ofxDuration-master.zip

trying this first

OF/openFrameworks-develop/addons/ofxDuration/example-simpleReceiver

totally did it, totally worked - have to show Pete Hellicar it tomorrow, and disuss which
controls he wants…made a new track:

Duration/durationData/FirstTry

audio all loaded in fine (-; need to test with film sync, see if that works OK.. try to set
the movie time on each frame? will it fuck everything? Basically should make a new
version of the app:

OF/openFrameworks-develop/apps/HAndLGreenpeace/003WithOFXDuration

Added:

GUI SimpleReceiverPort.txt

to data folder too…need to compare with: OF/openFrameworks-develop/addons/ofxDuration/example-
simpleReceiver and duplicate the functionality - start with scene control and colour….

MORNING TIME

OF/openFrameworks-develop/addons/ofxDuration/example-simpleReceiver

opening that and taking the functionality over…� �
ofxDurationTrack sceneTrack = duration.getTrack("/scene");
string currentScene = sceneTrack.flag;

if(currentScene == "VIDEO"){
currentMode = VIDEO;

}

if(currentScene == "SLITSCANBASIC"){

457

21 Case Study: Anthropocene, an interactive film installation for Greenpeace as part of their field at Glastonbury 2013

currentMode = SLITSCANBASIC;
}� �
totally works!

21.10.0.27 16th June 2013

Lets try the video syncing over osc.. Didn’t seem to work with:� �
float remoteTime = sceneTrack.lastUpdatedTime;
cout << "Remote␣time␣is:" << remoteTime << endl
float totalLengthOfVideo = greenpeaceVideo.getDuration();
float percentToSeekTo = remoteTime/totalLengthOfVideo;
greenpeaceVideo.setPosition(percentToSeekTo);� �
Hmmm. Sent this to james and got a response:
On 16 Jun 2013, at 19:00, James George wrote: yea it’s impossible to call setPosition
on a video every frame and have it playback smoothly. Quicktime needs to control its
own time. Try this: play the video back normally in openframeworks and then update
Duration every frame based on it’s position:� �
https://github.com/YCAMInterlab/Duration#controlling-duration-through-osc

Specifically make sure Duration has its incoming OSC port set and
from OF send it a /duration/seektosecond. Get the seconds from
the video player.getPosition()*player.getDuration() then create
an outgoing OSC message directed at Duration:

Seek /duration/seektosecond Second (Float) Sets playhead
position to the specified second

Sending the /seektosecond message will then trigger an update to
come back from Duration to your app and update all the other
params.� �

On Sun, Jun 16, 2013 at 1:49 PM, Joel Gethin Lewis wrote: Hey James, I’ve been trying to
get a Duration app to be able to sync the video playback on an OF app - I used your
example and have started trying to sync to the time from a track:� �
ofxDurationTrack sceneTrack = duration.getTrack("/scene");
string currentScene = sceneTrack.flag;
float remoteTime = sceneTrack.lastUpdatedTime;
cout << "Remote␣time␣is:" << remoteTime << endl;
float totalLengthOfVideo = greenpeaceVideo.getDuration();
cout << "totalLengthOfVideo␣time␣is:" << totalLengthOfVideo << endl;
float percentToSeekTo = remoteTime/totalLengthOfVideo;
cout << "percentToSeekTo␣time␣is:" << percentToSeekTo << endl;
greenpeaceVideo.setPosition(percentToSeekTo);� �
458

21.10 Appendix 3: Edited development notes

But it results in stuttering, playback - do you have any tips? How often are the control
packets sent? Should I be getting the remote time in a better way? Cheers, Joel

looking at:

https://github.com/YCAMInterlab/Duration#controlling-duration-through-osc

/duration/seektosecond

Is what we want…so need to setup osc, trying to get that working with a simple sender,
having problems gaining control from the OF app. Sent this:

On 16 Jun 2013, at 20:48, Joel Gethin Lewis wrote: Hey James, Thanks! It kind of works,
but not really. I have my app jumping around it’s video when I press t:� �
case 't':
{

float newseekposition = (float)mouseX/(float)ofGetWidth();
ofClamp(newseekposition, 0.f, 1.f); //safety
greenpeaceVideo.setPosition(newseekposition);
cout << "New␣seek␣position␣is:␣" << newseekposition << endl;

}� �
If the Duration app is set to paused, it updates fine, the playhead moving around when
I press T in my app- but I don’t get the messages back from Duration! If it isn’t paused
(the duration app), I get the messages, but I can’t move the Duration playhead around
with the above messages! Catch 22? What should I do? I want to get the messages
back, have it be playing on both ends and be able to seek. At the moment, I can
have seeking in my app and Duration, but without messages back. Or messages back,
without seeking.

Sending the /seektosecond message will then trigger an update to come back from
Duration to your app and update all the other params.

Doesn’t seem to be happening? Two little Duration suggestions:

1) Shouldn’t ofxDuration have a send to DurationAppmethod? That would be useful,
no? Auto osc.

2) Can I mute the audio of the Duration app in its GUI?

Any thoughts gratefully recieved. Ideally, I’d like either side to be Master if it sends
messages to the other. Make sense? My app the true master, but seeking to Quicktime
if it gets an occasional timeline change from the Duration app - but how to do that
only some of the time? Cheers, Joel

Made new osc send:

On 16 Jun 2013, at 20:51, Joel Gethin Lewis wrote: This is my send, in my update:� �
//update duration based on the position of the quicktime player

459

21 Case Study: Anthropocene, an interactive film installation for Greenpeace as part of their field at Glastonbury 2013

float videoTimeToSend =
greenpeaceVideo.getPosition()*greenpeaceVideo.getDuration();

ofxOscMessage m;
m.setAddress("/duration/seektosecond");
m.addFloatArg(videoTimeToSend);
senderToDuration.sendMessage(m);� �
Got this reply back, and replied:

On 16 Jun 2013, at 21:07, Joel Gethin Lewis wrote: Hey James, I’ll take a look. BUT! Looking
at this video:

https://vimeo.com/59653952

It looks like I might be better off doing everything in a single OF app. What do you
think? Do you think my massive video file (785,526,769 bytes (785.5 MB on disk)) will kill
your thumbnail maker? Lets see…Cheers, Joel

On 16 Jun 2013, at 20:53, James George wrote:

Huh! Duration should definitely update when you move the playhead even if it’s not
playing… Definitely a bug. Must be a bug in the way seektosecond works. This may be
a rabbit hole, but try downloading the source from the Duration website (its the entire
OF bundle) and see if you can give it a look. it’s probalby a simple change to make sure
that handleOscOut() works even when it’s not playing.

Watched that video above, did this:

jglmacbookprocore2:addons joel$ git clone https://github.com/YCAMInterlab/ofxTimeline.git

Trying:

OF/openFrameworks-develop/addons/ofxTimeline/example-videoRenderer

Worked…tried:

OF/openFrameworks-develop/apps/tryingBigVideoIntoOfxTimeline/example-allTracks

Totally worked! OK - so need to get audio file and video files separately… autosaves……
apple z for undo even works!

21.10.0.28 17th June 2013

On 17 Jun 2013, at 00:12, James George wrote: the video player posted on the oF list is
really nice, but it doesn’t support the getCurrentFrame() command which may cause
some issues. give it a shot! On Sun, Jun 16, 2013 at 5:02 PM, Joel Gethin Lewis wrote: IT
TOTALLY ROCKS! It totally works with the thumbnailer. Great work. I am going to code
it up as a pure OF app, with maybe a little OSC Remote. Did you see the discussion
about the new OSX high performance video player? How gnarly is the hookup to the
ofVideoPlayer? I just glanced at the code and it didn’t seem too bad.. AMAZING. Cheers,

460

21.10 Appendix 3: Edited development notes

Joel On Sun, 16 Jun 2013, at 21:26, James George wrote: that’s me in the video btw ;)
On Sun, Jun 16, 2013 at 4:26 PM, James George wrote: no it’ll be fine, the thumbnails
generator is really light, it pulls only as it needs. you can also disable it.

Need to decide on the different modes - and do a mirror mode and a proper sparkles
mode with direction.. First off, make a new version, with everything in it and timeline
and duration stripped out…RIGHT! made this:

OF/openFrameworks-develop/apps/HAndLGreenpeace/004BuiltInOfxTimeLine

All working nice for demo, need to re-add GUI elements for showing and hiding etc…
did it on mouse hide… works great with the slitscan control on too…So next, it’s really
time to do effects…mirror first.. add an x variable for the point….

21.10.0.29 18th June 2013

doing sparkles first: copied over:

/Users/joel/Documents/Projects/HellicarAndLewis/greenpeaceArcticGlastonbury2013/OF/openFrameworks-
develop/apps/HAndLGreenpeace/004BuiltInOfxTimeLine/bin/data/particles

• blob.png
• glitter.png
• sparkle.png
• star.png

as the images for the particles

https://github.com/HellicarAndLewis/MulticolouredMagic/blob/master/Somantics/src/somantics/Sparkles/Sparkles.cpp

Do this with the depth image as input to the blob tracker - or the IR image?

Get all three modes working first, then have a think about how to get them working as
MODES - make a mode object? Look at somantics for how to have scenes. Maybe call it
a mode? Construct with a pointer to the test app for easier data steal. Have a vector of
things. Just making sparkles for now, made a sparkle cloud, duplicated the spartkcles
logic from marekes sparkles from somantics - the one that spawns along the edges of
the blobs… great way of doing it! Going to need an FBO to draw the Sparkles into, so
looking at:

/Users/joel/Documents/Projects/HellicarAndLewis/greenpeaceArcticGlastonbury2013/OF/openFrameworks-
develop/examples/gl/fboTrailsExample

Lets make it first, then do a InstallationMode object, based on what Sparkles actually
needed. tightly coupling into testApp at the moment with a passed pointer, but what-
ever works for now…Compilation problems, forward declaration because of pointers to
testApp…

http://stephanschulz.ca/downloads/singleton.zip

461

21 Case Study: Anthropocene, an interactive film installation for Greenpeace as part of their field at Glastonbury 2013

had a look, from :

http://forum.openframeworks.cc/index.php/topic,12466.msg54372.html#msg54372

the first one i found was about singletons which allows you to have global variables
that can be accessed by all classes; i.e. all .cpp files. Bollocks to singletons… bad for test
app, decoupled…trying to get the FBO to play nicely with the slitscan and the sparkles

FBO->SLITSCAN is working:

RGB fbo!� �
ofImage distortionMap;
distortionMap.allocate(someSparkles.theFBO.getWidth(),

someSparkles.theFBO.getHeight(), OF_IMAGE_COLOR);
someSparkles.theFBO.readToPixels(distortionMap.getPixelsRef());
distortionMap.resize(timeline.getVideoPlayer("video")->getWidth(),

timeline.getVideoPlayer("video")->getHeight());
slitScan.setDelayMap(distortionMap);� �
setup:� �
theFBO.allocate(aWidth, aHeight, GL_RGB);� �
draw:� �
theFBO.begin();
ofSetColor(ofColor::black);
ofRect(0,0,theFBO.getWidth(), theFBO.getHeight());
ofSetColor(ofColor::white);
float circleX = theFBO.getWidth()/2.f;
float circleY = theFBO.getHeight()/2.f;
float circleRadius = min(circleX, circleY);
ofCircle(circleX,circleY, circleRadius);
theFBO.end();� �
So the bug is currently with how the cloud of sparkles is being drawn - is the contour
finder being read properly? I’m trying to draw at:581814,23197.4, at size:13.0935 is where
things were trying to draw! co-ordinates must be in pixels inside the contour tracker!
dumb……sorted it with:� �
void Sparkles::update(ofxCvContourFinder* aContourFinder){

float cloudWidth = theFBO.getWidth();
float cloudHeight = theFBO.getHeight();

float contourWidth = aContourFinder->getWidth();
float contourHeight = aContourFinder->getHeight();

float widthRatio = cloudWidth/contourWidth;
float heightRatio = cloudHeight/contourHeight;

462

21.10 Appendix 3: Edited development notes

// now just stick some particles on the contour and emit them
randomly

for(int i = 0; i < aContourFinder->nBlobs; i++) {
int step = 10;//contourFinder.blobs[i].pts.size()/10;
for(int j = 0; j < aContourFinder->blobs[i].pts.size();

j+=step) {
cloud.spawn(

(aContourFinder->blobs[i].pts[j].x)*widthRatio,
(aContourFinder->blobs[i].pts[j].y)*heightRatio,
ofRandom(-5, 5), ofRandom(-5, 5));

}
}

}� �
OK that works

SECOND:

On 17 Jun 2013, at 19:01, Joel Gethin Lewis wrote: This is themirror: https://github.com/HellicarAndLewis/MulticolouredMagic/blob/master/Somantics/src/somantics/Mirror/Mirror.cpp
Just do a vertical scene and a horizontal scene for now - kaledscope later…DONE… just
the vertical one for now…

THIRD:

Paint as a slitscan input. Lets do paint! it’s fun… - it is fun! It looks nice….DONE Quick
optimisation - why are both slitscans done separately? Changed it, all seems fine. BUG:
when switching to slitscan basic from sparkles, you don’t get any update of the slitscan
image, but it works initially…dirty hack to make work - change prevslitscan to -1 if it’s
not slitscan basic mode…

OK next! sleep…

21.10.0.30 20th June 2013

FOURTH:

Use the blobs from the depth image - make a bunch of triangles in box2d as greyscale
image that floats up and ADD that to slitscan…dropped in box2d, all working ok:
OF/openFrameworks-develop/apps/HAndLGreenpeace/006AddingOFXBox2D bit slow,
need to look at optimising…

21.10.0.31 21st June 2013

grabbing some addons:

• https://github.com/maxillacult/ofxPostGlitch

463

21 Case Study: Anthropocene, an interactive film installation for Greenpeace as part of their field at Glastonbury 2013

• https://github.com/outsidecontext/ofxPSLevels
• https://github.com/neilmendoza/ofxPostProcessing - http://www.neilmendoza.com/ofxpostprocessing/
• https://github.com/julapy/ofxOpticalFlowLK
• https://github.com/timscaffidi/ofxOpticalFlowFarneback
• https://github.com/Flightphase/ofxCvOpticalFlowLK

doing a quick look at them before supper…. lazy! look at in the morning….the next
evening! ok addons first….

doing this:

ofxCvOpticalFlowLK - no readme, no draw, moving on - could use the draw image into
an FBO easily

ofxOpticalFlowFarneback - OF/openFrameworks-develop/apps/bunchOfAddonsTrying/ofxOpticalFlowFarneback
looks beautiful! definitely develop this one post stripped down version…. easy conver-
sion to greyscale for the coloured one

ofxOpticalFlowLK - OF/openFrameworks-develop/apps/bunchOfAddonsTrying/ofxOpticalFlowLK
similar look to ofxOpticalFlowFarneback but not as pretty, use the other…

ofxPostGlitch - OF/openFrameworks-develop/apps/bunchOfAddonsTrying/ofxPostGlitch
lots of fun effects and already in an FBO! just do these effects on either the live video
OR the depth image, but put into the slitscan

ofxPostProcessing 3D demo, with� �
post.createPass<FxaaPass>()->setEnabled(false);
post.createPass<BloomPass>()->setEnabled(false);
post.createPass<DofPass>()->setEnabled(false);
post.createPass<KaleidoscopePass>()->setEnabled(false);
post.createPass<NoiseWarpPass>()->setEnabled(false);
post.createPass<PixelatePass>()->setEnabled(false);
post.createPass<EdgePass>()->setEnabled(false);� �
nice, but all in 3D - doing a quick hack to draw the video grabber in the scene. No,
couldn’t get it working, need to draw it to a texture and draw in space, no thank you…

ofxPSLevels� �
s += "\nbrightness␣(b/B)␣:␣" + ofToString(levels.brightness);
s += "\ncontrast␣(c/C)␣:␣" + ofToString(levels.contrast);
s += "\nsaturation␣(s/S)␣:␣" + ofToString(levels.saturation);
s += "\ngamma␣(g/G)␣:␣" + ofToString(levels.gamma);� �
nice to have this as a post effect for everything.

OK, lets get on with the other direction mirror AND the kaleidoscope….. should be
relatively straight forward, just drop in for now. get rid of box2d?

464

21.10 Appendix 3: Edited development notes

taking out ofxbox2d - that;s better, but why is just video playback so slow? Having
a look now… optimised the video only draw section…Still not fast, do it through the
fucking still scan with the image that does nothing….taking out colour…..made a few
more slitscans…

• ALLBLACK.png
• ALLWHITE.png
• NOHelvetica.png
• Rewind.png
• YesGillSans.png

left in bangs..turned on snapping…they look ok, can work on these…working on hori-
zontal mirror, made notes, did it not quite right…

This is wrong:� �
case SLIGHTLY BUGGERED RERVERSED VERTICAL MIRROR:
{

ofxCvColorImage mirrorImage;
mirrorImage.allocate(timeline.getVideoPlayer("video")->getWidth(),

timeline.getVideoPlayer("video")->getHeight());
mirrorImage.setFromPixels(timeline.getVideoPlayer("video")->getPixels(),

mirrorImage.getWidth(), mirrorImage.getHeight());
mirrorImage.updateTexture();
bool usingNormTexCoords = ofGetUsingNormalizedTexCoords();

if(!usingNormTexCoords) {
ofEnableNormalizedTexCoords();

}

mirrorImage.getTextureReference().bind();

ofMesh mesh;
mesh.clear();
mesh.addVertex(ofVec3f(0, 0));
mesh.addVertex(ofVec3f(0, ofGetHeight()));
mesh.addVertex(ofVec3f(ofGetWidth()/2, 0));
mesh.addVertex(ofVec3f(ofGetWidth()/2, ofGetHeight()));
mesh.addVertex(ofVec3f(ofGetWidth(), 0));
mesh.addVertex(ofVec3f(ofGetWidth(), ofGetHeight()));
mesh.addTexCoord(ofVec2f(0, 0.25));
mesh.addTexCoord(ofVec2f(0, 0.75));
mesh.addTexCoord(ofVec2f(1.0, 0.25));
mesh.addTexCoord(ofVec2f(1.0, 0.75));
mesh.addTexCoord(ofVec2f(0, 0.25));
mesh.addTexCoord(ofVec2f(0, 0.75));
mesh.setMode(OF_PRIMITIVE_TRIANGLE_STRIP);
ofSetColor(ofColor::white);
mesh.draw();

465

21 Case Study: Anthropocene, an interactive film installation for Greenpeace as part of their field at Glastonbury 2013

mirrorImage.getTextureReference().unbind();

// pop normalized tex coords
if(!usingNormTexCoords) {

ofDisableNormalizedTexCoords();
}
break;

}� �
This is right� �
case HORIZONTALMIRROR:
{

ofxCvColorImage mirrorImage;

mirrorImage.allocate(timeline.getVideoPlayer("video")->getWidth(),
timeline.getVideoPlayer("video")->getHeight());

mirrorImage.setFromPixels(timeline.getVideoPlayer("video")->getPixels(),
mirrorImage.getWidth(), mirrorImage.getHeight());

mirrorImage.updateTexture();

bool usingNormTexCoords = ofGetUsingNormalizedTexCoords();
if(!usingNormTexCoords) {

ofEnableNormalizedTexCoords();
}

mirrorImage.getTextureReference().bind();

ofMesh mesh;
mesh.clear();
mesh.addVertex(ofVec3f(ofGetWidth(), 0));
mesh.addVertex(ofVec3f(0, 0));
mesh.addVertex(ofVec3f(ofGetWidth(), ofGetHeight()/2));
mesh.addVertex(ofVec3f(0, ofGetHeight()/2));
mesh.addVertex(ofVec3f(ofGetWidth(), ofGetHeight()));
mesh.addVertex(ofVec3f(0,ofGetHeight()));
mesh.addTexCoord(ofVec2f(1.0, 0.25));
mesh.addTexCoord(ofVec2f(0.0, 0.25));
mesh.addTexCoord(ofVec2f(1.0, 0.75));
mesh.addTexCoord(ofVec2f(0.0, 0.75));
mesh.addTexCoord(ofVec2f(1.0, 0.25));
mesh.addTexCoord(ofVec2f(0.0, 0.25));
mesh.setMode(OF_PRIMITIVE_TRIANGLE_STRIP);
ofSetColor(ofColor::white);
mesh.draw();

mirrorImage.getTextureReference().unbind();

466

21.10 Appendix 3: Edited development notes

// pop normalized tex coords
if(!usingNormTexCoords) {

ofDisableNormalizedTexCoords();
}

}� �
Getting a bit better…fixing the controls - some of the keys were clashing. Red lines on
the screen indicate track in a and out below the main timeline.� �
Keys for Duration/ofxTimeline:

Note on OS X the COMMAND key is used, on Linux and Windows the CTRL
key is used

Function Shortcut
Cut Selection command+x
Copy Selection command+c
Paste Selection command+v
Undo command+z
Redo shift+command+z
Select all keyframes in Focused track command+a
Add all keyframes in Focused track to selection command+shift+a
Delete all selected keyframes delete or backspace
Nudge keyframes a little arrow keys
Nudge keyframes a little more shift+arrow keys
Expand Focused track alt+e
Collapse all tracks alt+c
Evenly distribute track sizes alt+shift+c� �
Sped things up by taking off vertical sync and smoothing too, 30fps. Did kaleidoscope,
little bugs I think…turned the update into a proper switch statement, really improved
performance! All good, enough for tonight….

21.10.0.32 23rd June 2013

OK first thing to do is to take over all the Kinect stuff from:

cariad/reactickles/oF/openFrameworks-develop/apps/zHarp/006withMemoLogic

So taking that over now….Making it all in:

OF/openFrameworks-develop/apps/HAndLGreenpeace/008NewKinectAndPsychBear

Taking over the code, adding the display to the blank scene…. Trying to get the saving
working….got it working - it was the bad characters! : and &. That’s working, now
neatening up the gui screen, adding a blank screen and taking out pointless Kinect
modes. OK thats nice, now lets get the psych fur working…All in and the gui in too!

467

21 Case Study: Anthropocene, an interactive film installation for Greenpeace as part of their field at Glastonbury 2013

OF/openFrameworks-develop/apps/HAndLGreenpeace/009ShatterExperiment

trying shatter…trying to make it work but there seems to be a conflict when I try to
include box2d. Hmmm

all i had to do was change shatter.h to :� �
include "ofMain.h"
include "ofxOpenCv.h"
include "ofxBox2D.h"� �
from:� �
include "ofMain.h"
include "ofxBox2D.h"
include "ofxOpenCv.h"� �
Via OF Forum post: http://forum.openframeworks.cc/index.php?topic=7165.0 :

paulf london Posts: 22 Re: Weird codeblocks 007 build errors Reply #5 on: April 05,
2012, 02:12:39 PM in testApp.h having #include “ofxOpenCv.h” at the top of my include
list solved the issue for me

Crazy… OK. got that working, but way too slow…� �
float timeSinceLastShatter = ofGetElapsedTimef() - timeOfLastShatter;

if(timeSinceLastShatter > 10.f){ //every 2 seconds make some more....
float shatterWidth = theFBO.getWidth();
float shatterHeight = theFBO.getHeight();
float contourWidth = aContourFinder->getWidth();
float contourHeight = aContourFinder->getHeight();
float widthRatio = shatterWidth/contourWidth;
float heightRatio = shatterHeight/contourHeight;

// now just stick some particles on the contour and emit them
randomly

for(int i = 0; i < aContourFinder->nBlobs; i++) {
int step = 20;

shape.clear();

for(int j = 0; j < aContourFinder->blobs[i].pts.size();
j+=step) {
shape.addVertex((aContourFinder->blobs[i].pts[j].x)*widthRatio,

(aContourFinder->blobs[i].pts[j].y)*heightRatio);
}

// This is the manual way to triangulate the shape
// you can then add many little triangles
// first simplify the shape

468

21.10 Appendix 3: Edited development notes

shape.simplify();
// save the outline of the shape
ofPolyline outline = shape;
// resample shape
ofPolyline resampled = shape.getResampledBySpacing(256);

//dude
//ofPolyline resampled = shape.getResampledBySpacing(100);
// triangulate the shape, return am array of triangles
vector <TriangleShape> tris =

triangulatePolygonWithOutline(resampled, outline);
// add some random points inside
addRandomPointsInside(shape, 255);

// now loop through all the tri's and make a box2d triangle
for (int i=0; i<tris.size(); i++) {

ofxBox2dPolygon p;
p.addTriangle(tris[i].a, tris[i].b, tris[i].c);
p.setPhysics(1.0, 0.3, 0.3);
p.setAsEdge(false);
if(p.isGoodShape()) {

p.create(box2d.getWorld());
triangles.push_back(p);

}
}

// done with shape clear it now
shape.clear();

}

timeSinceLastShatter = ofGetElapsedTimef();
}� �
Let’s just spray triangles out from the top of the blobs…like sparkles but with trian-
gles….triangles lame, circles work! Had it running on pete’s laptop all lovely…

21.10.0.33 24th June 2013

OK, things to try this morning before lunch:

DONE 1. feed in current frame as greyscale for the slitscan DONE 2. try a slitscan
mode where I make a spikey slitscan mode - like in divide by zero, going to need
OF/openFrameworks-develop/addons/ofxContourUtil from julapy make the triangles
shaded? make an ofMesh of it? DONE 3. try the full video, or the mirror vertical/hor-
izontal for the background of the kaleidescope DONE - flock it .4. try a flock attracted
to blobs….

OF/openFrameworks-develop/apps/HAndLGreenpeace/010WithSpikyBlobsFlockAndSelfSlitScan

469

21 Case Study: Anthropocene, an interactive film installation for Greenpeace as part of their field at Glastonbury 2013

Made that. starting with 1. SELFSLITSCAN - super easy:� �
if(timeline.getVideoPlayer("video")->isFrameNew()){

slitScan.setDelayMap(timeline.getVideoPlayer("video")->getPixelsRef());
slitScan.addImage(timeline.getVideoPlayer("video")->getPixelsRef());� �

Next on to spikey mode! Was going to use:

ofxContourUtil-master

From julapy, but it’s all in:� �
void ofPolyline::simplify(float tol){� �
In core, so lets have a go with that…also have:� �
ofPolyline ofPolyline::getSmoothed(int smoothingSize, float

smoothingShape)� �
This is the logic from Divide by Zero:� �
// contour simplification/manipulation

int numberOfBlobs = videoContourFinder.blobs.size();

if(numberOfBlobs > 0){
//if we have at least one blob

curve.resize(numberOfBlobs);
curveSmooth.resize(numberOfBlobs);
curveSimplify.resize(numberOfBlobs);
curveCvSimplify.resize(numberOfBlobs);
float mx = gui.getValueF("AURA_SIMPLIFICATION");
float scale1 = mx;
float scale2 = mx * 140;
float scale3 = mx * 0.1;
bool noneSmooth = gui.getValueB("AURA_IS_SMOOTH");
bool simplifyCV = gui.getValueB("AURA_IS_CV");
float auraScale = gui.getValueF("AURA_SCALE");
bool scaleFromStage = gui.getValueB("AURA_SCALE_FROM_STAGE");

for(int i = 0; i< numberOfBlobs; i++){
curve[i] = videoContourFinder.blobs[i];
ofPoint centreOfStage = ofPoint(camWidth/2.f, camHeight);

if(scaleFromStage){
curve[i].scaleBlob(centreOfStage, auraScale); //scale

from the base of stage
}else {

curve[i].scaleBlob(curve[i].centroid, auraScale); //else
do it from the centroid

470

21.10 Appendix 3: Edited development notes

}

if(noneSmooth){ //smooth it
cu.smooth(curve[i].pts, curveSmooth[i].pts, scale1);

}else{
//do nothing.

}

if(simplifyCV){
//cv simplify it

simplifyDP_openCV(curve[i].pts, curveCvSimplify[i].pts,
scale3);

}else{
//just simplify it

cu.simplify(curve[i].pts, curveSimplify[i].pts, scale2
);

}
}

}� �
So lets have a look at the demo here:

/Users/joel/Documents/Projects/HellicarAndLewis/greenpeaceArcticGlastonbury2013/OF/openFrameworks-
develop/examples/graphics/polylineBlobsExample

Very useful demo….used all the code from demo and ofPolyline in general. Looks nice,
ended up doing a simplify down to 10 points…. Let’s move onto changing the back-
ground for the kaleidoscope…did it with the vertical mirror as the background, pretty..
Downloaded:

https://github.com/jefftimesten/CodeForArt https://github.com/jefftimesten/CodeForArt/tree/master/Chapter004-
physics/012-flock/src

Is what i used for Whiteheat anyhow… jefftimesten = jeff crouse. Lets use it again…flock
it, too slow too lame no fun… lets do it with particles instead…Looks ok. Going to crack
on with the movie….changed name to:

OF/openFrameworks-develop/apps/HAndLGreenpeace/010WithSpikyBlobsParticlesAndSelfSlitScan

Doing the audio now and new film in:

2013_06_24_newFilmAndAudio

Copied in and took over to Pete’s computer so he could have a play….he is sequencing…

21.10.0.34 25th June 2013

Shower! was lovely. Long drop too.

TODO today: lets do white fur first…looks great…copying over to pete…

471

21 Case Study: Anthropocene, an interactive film installation for Greenpeace as part of their field at Glastonbury 2013

DONE 1) kaledscope is always, (2n)+1 : 3,5,7,9,11,13,15,17,19 19 as the limit… which is up to
9 DONE 2) add WHITE FUR to: VERTICALMIRROR, HORIZONTALMIRROR, KALEIDOSCOPE,
MIRRORKALEIDOSCOPE, SLITSCANBASIC

copied in the new slitscans:

• 00_ALLBLACK.png
• 01_ALLWHITE.png
• 01_random_grid.png
• down_to_up.png
• left_to_right.png
• right_to_left.png
• soft_noise.png
• Triangle_001.png
• Triangle_002.png
• Triangle_003.png
• Triangle_004.png
• Triangle_005.png
• up_to_down.png

look amazing!

First, kaleidoscope - want always even! timeline.addCurves(“star”, ofRange(2, 12)); - so
just double it… Second, adding white fur…..to VERTICALMIRROR, HORIZONTALMIRROR,
KALEIDOSCOPE, MIRRORKALEIDOSCOPE, SLITSCANBASIC

21.10.0.35 26th June 2013

Just changed the fur to not have any alpha (white fur that is) also added non-
ofxTimeline GUI to everything…

472

22 Version control with Git

by Christoph Buchner (bilderbuchi¹)

In this chapter, you will learn about version control and why you should use it. You
will get a short introduction to Git, the version control system of choice for openFrame-
works. The major concepts and keywords are explained, enabling you to easily dig
deeper into the subject using available online resources. A number of tools for work-
ing with Git are presented. You will learn about Github, a web service for hosting Git
repositories and one of the major platforms for “social coding”. You will be shown how
you can start hosting your own projects on Github and leverage its features. Finally,
you will learn how you can build upon the things you just learned and where you can
get help if you get stuck.

22.1 What is version control, and why should you use it?

How do you track the state of your projects over time? Have you ever made several
copies of your project folder (or text document, Photoshop file,…)? Did you name them
something like Awesome_project_1, Awesome_project_may10, Awesome_project_
final, Awesome_project_final2, Awesome_project_really_final,…? Did you
mail around zipped projects to collaborators, and had some trouble synchronizing
the changes they (or you) made in the meantime? Have you run into problems when
you had to go back to a previous version, change things, copy those changes to other
version, or generally keep tabs on changes?

If you nodded at some of these questions, you’ve come to the right place - version
control is there to help you! Version control² (also called revision control) is the man-
agement of changes to documents, computer programs, large web sites, and other col-
lections of information. It is used to easily, efficiently and reproducibly track changes
to all kinds of information (like a really advanced “undo” function). Specifically, in pro-
gramming it is (primarily) used to track changes to your source code, but it’s generally
applicable to most kinds of files on your computer. Version control also enables pro-
grammers to effectively collaborate in teams, because it offers methods to distribute
changes, merge different development versions together, resolve conflicts if two (or
more) programmers modified the same file, sync state between computers, etc.

¹https://github.com/bilderbuchi
²http://en.wikipedia.org/wiki/Revision_control

473

https://github.com/bilderbuchi
http://en.wikipedia.org/wiki/Revision_control

22 Version control with Git

I hope you’ll agree by now that it is a very good idea to use some manner of version
control when developing your programs. In the next section, I’ll talk a bit about the
different choices you have when choosing a particular system.

22.2 Different version control systems

There is a number of version control systems out there, some of which you’ve maybe
encountered already. They can be divided into two big camps: “centralized” and “dis-
tributed” systems.

In centralized version control systems³, a central server orchestrates the various tasks
the version control system performs, and programmers synchronize with this server.
Common operations often need a network connection to the central server. Typically,
programmers only have a part of the whole project locally available. Some popular
centralized version control⁴ systems are:

• Concurrent Versions System (CVS)⁵, which has introduced the “branching” con-
cept⁶ into version control systems.

• Subversion (SVN)⁷, a popular successor to CVS.

Distributed version control systems⁸, on the other hand, take a peer-to-peer approach.
There is no central server, and every (local) repository contains all files and history
(thus acting as a backup, too!). Network access is only needed for syncing changes
with other programmers. Distributed version control systems have recently gained
much popularity. Some notable systems⁹ are:

• Git¹⁰ was initially designed and developed by Linus Torvalds for Linux kernel de-
velopment. Its popularity has recently boomed.

• Bazaar¹¹ is a distributed version control system created by Canonical (the com-
pany behind Ubuntu). It is primarily used on Launchpad¹², a code hosting plat-
form primarily used for developing projects around Ubuntu.

• Mercurial¹³ was started around the same time as Git. It is quite similar to Git¹⁴,
especially to a newcomer.

³http://en.wikipedia.org/wiki/Revision_control
⁴http://en.wikipedia.org/wiki/List_of_revision_control_software
⁵http://savannah.nongnu.org/projects/cvs
⁶http://en.wikipedia.org/wiki/Concurrent_Versions_System#History_and_status
⁷http://subversion.apache.org/
⁸http://en.wikipedia.org/wiki/Distributed_revision_control
⁹http://en.wikipedia.org/wiki/List_of_revision_control_software
¹⁰http://en.wikipedia.org/wiki/Git_%28software%29
¹¹http://bazaar.canonical.com/
¹²launchpad.net
¹³http://mercurial.selenic.com/
¹⁴http://stackoverflow.com/questions/35837/what-is-the-difference-between-mercurial-and-git

474

http://en.wikipedia.org/wiki/Revision_control
http://en.wikipedia.org/wiki/List_of_revision_control_software
http://savannah.nongnu.org/projects/cvs
http://en.wikipedia.org/wiki/Concurrent_Versions_System#History_and_status
http://subversion.apache.org/
http://en.wikipedia.org/wiki/Distributed_revision_control
http://en.wikipedia.org/wiki/List_of_revision_control_software
http://en.wikipedia.org/wiki/Git_%28software%29
http://bazaar.canonical.com/
launchpad.net
http://mercurial.selenic.com/
http://stackoverflow.com/questions/35837/what-is-the-difference-between-mercurial-and-git

22.3 Introduction to Git

22.3 Introduction to Git

openFrameworks uses Git to version-control the code base, and relies on Github¹⁵ as
a hosting platform for the code and the issue tracker. In this section, I’ll give you an
introduction on how to use version control with your openFrameworks project, and
introduce the relevant concepts and commands as they are encountered.
Note that this chapter is only an introduction, and as such only touches the surface
of Git’s capabilities, both in the presented commands, and their options. Much more
detailed information, including in-depth tutorials and a command reference, can be
found online. Some links are collected at the end of the chapter, and most commands
presented have a link to their online reference.
In what follows, I’ll explain the basic concepts of Git. After that, I’ll show the typical
operations involved in using Git with an openFrameworks project in a walk-through
fashion. Then I will show you how to work with remote Git servers.

22.3.1 Basic concepts

When you put your project (which is contained in a directory on your disk) under version
control, Git creates a repository in your project directory. This means that the contents
of that folder are tracked with Git. Most of the files associated with Git are in the .git
folder in your project root (the leading dot means this folder is by probably hidden
from view in your file browser by default).
The basic element for tracking the history of the repository is the commit. This is
basically a snapshot of the repository’s state at the time of the commit, including a
commit message and any parent commit(s). Think of it as a checkpoint for saving in a
videogame. It has a unique identifier called the hash (or SHA). This is a checksum cal-
culated from the commit’s contents. It’s impossible to change any part of the commit
without the hash changing. Thus, a commit hash uniquely defines a commit and the
whole history preceding it.
As your work proceeds, you will be adding commits, describing the things you change.
These commits will form a chain of commits, making up the project history. A chain of
such commits is called a branch, and the default branch is called master. Branches
can also be created when you decide to diverge from a line of development, and try
something different (for example a new feature, or a bug fix) while preserving the state
of the project. This new chain of commits, which branches off at a certain commit of
the original branch, now forms its own branch.
Branches can be merged into another branch. When this happens, Git analyzes the
two different branches and merges their different histories/changes together.
This figure visualizes how this looks like:
¹⁵www.github.com

475

www.github.com

22 Version control with Git

Figure 22.1: Simple Git branch diagram.

Finally, there are three different “areas” in Git, which you will encounter often when
reading about Git:
The repository in the .git directory contains all the commits. The HEAD points to
the current commit of the branch you are currently on. This represents the latest
committed state of your repository. If you create a new commit, it will become this
commit’s parent (and HEAD will be moved to the new commit).
The working directory contains the files and folders under version control, the stuff
you modify and work with when writing code for your project.
When you prepare a commit, you first have to stage any changes you want that commit
to contain. This means that these changes will be put into the index (or staging area).
So, youmodify your files in the working directory, you stage thosemodifications, putting
them into the index, and then you create a commit, taking the files from the index and
storing them in the repository. To get files back from the repository (i.e. restore the
state as it was at some previous point), you check out files, putting them into the
working directory. This is shown graphically in the following figure:

Figure 22.2: The three areas of Git.

Armed with these basic facts, we can dive right in, and start working on our first project!

22.3.2 Getting started: project setup

You can follow along with this section by entering the given commands (in the line
starting with $) into your terminal. You can also use a Git program with a GUI if you
want (some will be presented later in the chapter), but you will have to figure out which
actions correspond to the respective terminal commands.
Much of what follows will be less tedious to achieve, and presented in a prettier way,
if you’re using a GUI to interact with Git. Nevertheless, I am presenting this intro with
a terminal-based approach for several reasons:

476

22.3 Introduction to Git

• I think it’s actually more instructive to follow some typed commands than pages
after pages of (rapidly outdated) screenshots of a GUI app you probably don’t
even use (as there are quite a lot of them out there).

• Many GUI programs don’t offer the full range of functions that Git provides, so
you will probably have to drop down into a terminal sooner or later. At that point
it’s quite handy to know what your GUI does in the background.

• Most of the online documentation and advice on Git focus on the command-line
interface.

First, we have to set up Git itself for our operation system. This mainly involves down-
loading and installing¹⁶ and setting the username and email address. The instructions
vary slightly depending on the operating system¹⁷.

When we have successfully set up Git, we create a new, empty project with the OF
project generator. We will end up with a project folder containing some C++ files and
some IDE files depending on OS and chosen IDE (in my case: Linux and Code::Blocks).
This will look similar to this:� �
$ tree -a --charset ascii
.
|-- addons.make
|-- bin
| `-- data
| `-- .gitkeep
|-- config.make
|-- demoProject.cbp
|-- demoProject.workspace
|-- Makefile
`-- src

|-- main.cpp
|-- ofApp.cpp
`-- ofApp.h

3 directories, 9 files� �
Now, it’s time to create our Git repository, using the git init command:� �
$ git init
Initialised empty Git repository in

/home/bilderbuchi/demoProject/.git/� �
¹⁶http://git-scm.com/downloads
¹⁷https://help.github.com/articles/set-up-git#platform-all

477

http://git-scm.com/downloads
https://help.github.com/articles/set-up-git#platform-all

22 Version control with Git

22.3.2.1 .gitignore

One thing we should do right at the beginning is add a special Git file called
.gitignore¹⁸ to the root of our repository.
It’s important that the Git repository contains all files necessary to successfully com-
pile our program, but no unnecessary stuff. Generally, this means that files we edit
by hand (e.g. source and header files, Readme files, images,…) should be included in
the repository, but files which are generated from our code (e.g. compiled binaries,
pdfs generated from some source file, video files or image sequences created with our
program) should stay out. Also, user-specific files like IDE files describing the location
of windows in our IDE, or backup copies of our files that the OS creates, don’t really
belong in the repository.
If we take care of this right at the beginning, we can easily make sure that only “proper”
files end up in our repo. Git handles this file exclusion with the aforementioned
.gitignore files (there can be several), which contains patterns describing which files
are ignored by Git. Those ignored files will still exist in our working directory, that
means we can still use them, but Git will not track them.
If, later down the line, we see files appearing in our list of changes which should not be
there, or if we can’t seem to add a file that belongs in the repository, we don’t force Git
to do what it doesn’t want to, rather fine-tune the .gitignore pattern to match our
expectations. Note that the .gitignore pattern does not affect files that have already
been committed.
Because it can be daunting to come up with a generally useful .gitignore template,
it’s currently planned¹⁹ that OF offers to add a pre-made .gitignore file when we
create our project. This file will look similar to this (formatted into three columns for
convenience):� �
$ pr -tW84 -s"|" -i"␣"1 -3 .gitignore
###########################| |.externalToolBuilders
ignore generated binaries|# XCode |
but not the data folder |*.pbxuser |##################
###########################|*.perspective |# operating system

|*.perspectivev3 |##################
/bin/* |*.mode1v3 |
!/bin/data/ |*.mode2v3 |# Linux

|# XCode 4 |*~
######### |xcuserdata |# KDE
general |*.xcworkspace |.directory
######### | |.AppleDouble

|# Code::Blocks |
[Bb]uild/ |*.depend |# OSX
[Oo]bj/ |*.layout |.DS_Store

¹⁸http://git-scm.com/docs/gitignore
¹⁹https://github.com/openframeworks/openFrameworks/issues/2791

478

http://git-scm.com/docs/gitignore
https://github.com/openframeworks/openFrameworks/issues/2791

22.3 Introduction to Git

.o | |.swp
[Dd]ebug*/ |# Visual Studio |*~.nib
[Rr]elease*/ |*.sdf |# Thumbnails
.mode |*.opensdf |._*
.app/ |.suo |
.pyc |.pdb |# Windows
.svn/ |*.ilk |# Image file caches
.log |.aps |Thumbs.db

|ipch/ |# Folder config file
######################## | |Desktop.ini
IDE files which should |# Eclipse |
be ignored |.metadata |# Android
######################## |local.properties |.csettings� �
This might look like magic to you, but let us just continue for now, you can always look
up more information on the .gitignore syntax later, for example here²⁰.

22.3.2.2 git status

A command which we will use very often is git status²¹. This command enables us
to see the current state of a repository at a glance. It offers some flags to fine-tune its
output (like most Git commands).

Alright, let’s use git status -u to see what’s going on in our repository. The -u flag
makes sure we see all untracked files, even in subdirectories:� �
$ git status -u
On branch master
#
Initial commit
#
Untracked files:
(use "git add <file>..." to include in what will be committed)
#
.gitignore
Makefile
addons.make
bin/data/.gitkeep
config.make
demoProject.cbp
demoProject.workspace
src/main.cpp
src/ofApp.cpp
src/ofApp.h

²⁰http://git-scm.com/docs/gitignore
²¹http://git-scm.com/docs/git-status

479

http://git-scm.com/docs/gitignore
http://git-scm.com/docs/git-status

22 Version control with Git

nothing added to commit but untracked files present (use "git␣add"
to track)� �

The output tells us which branch we are currently on (master), that we haven’t com-
mitted anything yet, and that there are a couple of untracked files (i.e. not yet known to
Git) in the repository and, importantly, what we should do next. Using git status -s
is an option to get more condensed output.

The list of files looks correct, so far so good! You might have noticed the .gitkeep file
in bin/data/. Git only tracks files, not directories, which means that empty directories
are not visible to Git. A common technique to work around this, if you want to have
empty directories (e.g. for future output files) in your repository, is to place an empty
file there, which makes sure that that directory can be added to Git. Naming that file
.gitkeep is just a convention, and has no special meaning to Git.

If we compile the OF project now, some additional files will be created in the /bin
folder. Because we added a .gitignore file in the previous step, these files will not
be picked up by Git. We can check this by running git status -u again.

22.3.2.3 git add

The next step is to stage the untracked files using git add²². This will put those files
into the index, as discussed previously.

We stage untracked files and modifications to files already in the repository with the
command git add <filespec>, where <filespec> describes one or more files or
directories, so could be for example addons.make, src or *.cpp.

We can also add all files and modifications in the repository with git add ., but as
this is a catch-all filespec, we will have to check the output of git status -u first, to
make sure no unwanted files are missed by the .gitignore pattern and would slip
into the repository! Since we just made sure our git status looks alright, let’s do it:� �
$ git add .� �
You will notice a change when we run git status next:� �
$ git status
On branch master
#
Initial commit
#
Changes to be committed:
(use "git rm --cached <file>..." to unstage)
#

²²http://git-scm.com/docs/git-add

480

http://git-scm.com/docs/git-add

22.3 Introduction to Git

new file: .gitignore
new file: Makefile
new file: addons.make
new file: bin/data/.gitkeep
new file: config.make
new file: demoProject.cbp
new file: demoProject.workspace
new file: src/main.cpp
new file: src/ofApp.cpp
new file: src/ofApp.h
#� �
All those untracked files are now in the “Changes to be committed” section, and so will
end up in the next commit we make (if we don’t unstage them before that).

To unstage changes we have accidentally staged, we use git rm --cached <file>
(for newly added files) or git reset HEAD <file> (for modified files). As usual, git
status reminds us of these commands where appropriate.

22.3.2.4 git commit

Now that we’ve prepared the staging area/index for our first commit, we can go ahead
and do it. To this end we will use git commit²³. We can supply a required commit
message at the same time by using the -m flag, otherwise Git will open an editor where
we can enter a message (and then save and exit to proceed).� �
$ git commit -m "Add␣initial␣set␣of␣files."
[master (root-commit) 3ef08e9] Add initial set of files.
10 files changed, 388 insertions(+)
create mode 100644 .gitignore
create mode 100644 Makefile
create mode 100644 addons.make
create mode 100644 bin/data/.gitkeep
create mode 100644 config.make
create mode 100644 demoProject.cbp
create mode 100644 demoProject.workspace
create mode 100644 src/main.cpp
create mode 100644 src/ofApp.cpp
create mode 100644 src/ofApp.h� �

The first line of the output shows us the branch we are on (master), and that this was
our first commit, creating the root of our commit tree. Also, we see the hash (i.e. the
unique ID) of the commit we just created (3ef08e9) and the commit message. The
hash is given in a short form, as it’s often sufficient to only supply the first seven or
so characters of the hash to uniquely identify a commit (Git will complain if that’s

²³http://git-scm.com/docs/git-commit

481

http://git-scm.com/docs/git-commit

22 Version control with Git

not the case). The next line roughly describes the changes that were committed, how
many files were changed and how many insertions and deletions were committed. The
rest lists the files new to Git, the mysterious mode 100644 is a unix-style description
of the file permissions, 100644 is a regular, non-executable file (100755 would be an
executable file).

Now, let’s check our status to see what’s going on in the repository:� �
$ git status
On branch master
nothing to commit, working directory clean� �
Hooray, that’s the all-clear, all systems green message! It means that the working
directory as it is right now is already committed to Git (with the exception of ignored
files). It’s often a good idea, whenever you start or stop working in a repository, to start
from this state, as you will always be able to fall back to this point if things go wrong.

Now that we have made our initial commit, we can make our first customizations to
the OF project. Onwards!

22.3.3 First edits

OK, we have a clean slate now, so let’s start playing around with our OF project. A
programming tutorial wouldn’t be complete without saying hello to the world, so let’s
do that: Open ofApp.cpp, and in the implementation of void ofApp::setup(), add
an appropriate message, e.g. cout << "Hello world";, and save the file.

We have just made a modification to a file that Git is tracking, so it should pick up on
this, right? Let’s check, using git status (you hopefully already guessed that part):� �
$ git status
On branch master
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working

directory)
#
modified: src/ofApp.cpp
#
no changes added to commit (use "git␣add" and/or "git␣commit␣-a")� �
Alright, Git tells us it knows that wemodified ofApp.cpp. Note that now the entry is in a
section called “Changes not staged for commit”, not “untracked files” as before. Again,
git status offers instructions for what we could want to do next, very convenient.

482

22.3 Introduction to Git

22.3.3.1 git diff

Now, let’s find out what exactly we changed in ofApp.cpp. For this, git diff²⁴ is used.
It can be used to compare states between all kinds of areas (check out the examples
section of the man page²⁵), but in its simplest form, git diff, allows us to view the
changes we made relative to the index (staging area for the next commit). In other
words, the differences are what we could tell Git to further add to the index but we still
haven’t." (from the man page²⁶). (Use the --staged option to see the diff of already
staged changes.) Let’s check it out:� �
$ git diff
diff --git a/src/ofApp.cpp b/src/ofApp.cpp
index b182cce..8018cf7 100644
--- a/src/ofApp.cpp
+++ b/src/ofApp.cpp
@@ -3,6 +3,7 @@
//--
void ofApp::setup(){

+ cout << "Hello␣world!";
}

//--� �
This output shows the difference between two files in the unified diff format²⁷ (diff
is a popular Unix tool for comparing text files). It looks pretty confusing, but let’s pick
it apart a bit to highlight the most useful parts.

The first line denotes the two different files being compared, denoted as a/... and
b/.... If we have not just renamed a file, those two will typically be identical.

The next couple of lines further define what exactly is being compared, but that’s not
interesting to us until we come to the line starting with @@. This defines a so-called
“hunk”, which means it tells us what part of the file is being shown next. In the original
state (prefixed by -), this section starts at line 3, and goes on for 6 lines. In the new
state (prefix +), the section starts at line 3, and goes on for 7 lines.

Next, we see the actual changes, with a couple of lines around it for context. Unchanged
lines start with a space, added lines with a +, and removed lines with a -. A modified
line will show up as a removed line, followed by an added line. We can see that one
line containing a hello world message was added.

Now that we have made some changes, we can compile and run the program to confirm
it works as expected, and we didn’t make a mistake. Then, we can prepare a commit

²⁴http://git-scm.com/docs/git-diff
²⁵http://git-scm.com/docs/git-diff
²⁶http://git-scm.com/docs/git-diff
²⁷http://en.wikipedia.org/wiki/Diff#Unified_format

483

http://git-scm.com/docs/git-diff
http://git-scm.com/docs/git-diff
http://git-scm.com/docs/git-diff
http://en.wikipedia.org/wiki/Diff#Unified_format

22 Version control with Git

with the modification, as before:� �
$ git add src/ofApp.cpp

$ git status
On branch master
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
#
modified: src/ofApp.cpp
#� �
Before we commit again, a couple of words regarding commits and commit messages:

First, a good mantra to remember is to “commit early, commit often”. This means you
should create frequent small commits, whenever a somewhat self-contained element
of code is finished (e.g. implementing a new function, fixing a small bug, refactoring
something) as opposed to whole features (e.g. “Implement optical flow tracking for
my installation.”) or mixing different changes together (“Updated Readme, increased
performance, removed unused Kinect interaction.”) . The reasoning behind this is that
it creates a fine-grained trail of changes, so when something breaks, it is easier to find
out which (small) change caused the problem (e.g. with tools like git bisect²⁸), and
fix it.

Second, write good commit messages. This will make it easier for everybody else, and
future you in a couple of months, to figure out what some commit does. A good, concise
convention for how a good commit message looks can be found here²⁹. In short, you
should have a short (about 50 characters or less), capitalized, imperative summary (e.g.
“Fix bug in the file saving function”). If this is not enough, follow this with a blank line(!)
and a more detailed summary, wrapping lines to about 72 characters. (If your terminal
supports this, omitting the second quotation mark allows you to enter multiple lines.
Otherwise, omit the -m flag to compose the commit message in the editor.)

Now that that is out of the way, we can commit the change we just added, and check
the status afterwards:� �
$ git commit -m "Add␣welcome␣message"
[master e84ba14] Add welcome message
1 file changed, 1 insertion(+)

$ git status
On branch master
nothing to commit, working directory clean� �
²⁸http://git-scm.com/docs/git-bisect
²⁹http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

484

http://git-scm.com/docs/git-bisect
http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

22.3 Introduction to Git

22.3.4 Branches and merging

Branches and merging³⁰ are the bread and butter of Git, so you will be branching
and merging a lot. Branching and merging often is a workflow encouraged by Git, as
those are computationally cheap operations. We are getting into some slightly more-
advanced stuff, so if you don’t quite grasp it right away don’t be worried.

For example, if we want to create some new feature, or fix a bug in our program, it
is prudent to start this work on a branch separated from the main branch. This has
several advantages:

• Our work on is contained in this branch.
• We can quickly and easily switch to another topic of work if needed.
• The main branch is unaffected by our work as long as it’s not merged, so normal
operations can continue in the meantime (e.g. when we create an experimental
addition to an OF addon other people are using).

22.3.4.1 git branch and git checkout

To get a list of the branches in a repository, we use git branch³¹ without arguments
(* denotes the current branch). Since we only have one branch for now, this is not very
exciting:� �
$ git branch
* master� �
To create a new branch, we use git branch <branchname>. To then check out
that branch, to make it the current one, we use git checkout <branchname>³².
There is a shorter way to achieve both operations in one, using git checkout
-b <branchname>, so let’s use that to create and check out a new branch called
celebration:� �
$ git checkout -b celebration
Switched to a new branch 'celebration'

$ git branch
* celebration

master� �
To celebrate, let’s add a secondmessage after the “Hello World”, e.g. cout << "Yeah,
it works";. Let’s confirm that Git has picked this up, using git diff as before:

³⁰http://git-scm.com/book/en/Git-Branching
³¹http://git-scm.com/docs/git-branch
³²http://git-scm.com/docs/git-checkout

485

http://git-scm.com/book/en/Git-Branching
http://git-scm.com/docs/git-branch
http://git-scm.com/docs/git-checkout

22 Version control with Git

� �
$ git diff
diff --git a/src/ofApp.cpp b/src/ofApp.cpp
index 8018cf7..59d84fa 100644
--- a/src/ofApp.cpp
+++ b/src/ofApp.cpp
@@ -4,6 +4,7 @@
void ofApp::setup(){

cout << "Hello␣world!";
+ cout << "\nYeah,␣it␣works!";
}

//--� �
If we run git status again, it will show that we are on the celebration branch now:� �
$ git status
On branch celebration
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working

directory)
#
modified: src/ofApp.cpp
#
no changes added to commit (use "git␣add" and/or "git␣commit␣-a")� �
Because we have confirmed that the list of changes to be staged and committed is
alright, we can take a little shortcut. Using the -a flag of git commit³³, we can tell
Git to automatically stage modified or deleted files (new files are not affected) when
committing, so we can skip the git add step:� �
$ git commit -am "Let␣us␣celebrate!"
[celebration bc636f4] Let us celebrate!
1 file changed, 1 insertion(+)

$ git status
On branch celebration
nothing to commit, working directory clean� �
22.3.4.2 Merging branches

Let us meanwhile add a feature on the master branch. First, we check out the master
branch:
³³http://git-scm.com/docs/git-commit

486

http://git-scm.com/docs/git-commit

22.3 Introduction to Git

� �
$ git checkout master
Switched to branch 'master'� �
Now, we can add some code to switch the background color if the space key is pressed.
You should be able to recognize what I did by looking at the output of git diff. Try
to approximately replicate these changes:� �
$ git diff
diff --git a/src/ofApp.cpp b/src/ofApp.cpp
index 8018cf7..f7e3dbc 100644
--- a/src/ofApp.cpp
+++ b/src/ofApp.cpp
@@ -18,12 +18,16 @@ void ofApp::draw(){

//--
void ofApp::keyPressed(int key){

-
+ if (key == ' ') {
+ ofBackground(255);
+ }
}

//--
void ofApp::keyReleased(int key){

-
+ if (key == ' ') {
+ ofBackground(127);
+ }
}

//--� �
Next, we again commit quickly (as we already checked the modifications to be commit-
ted with git diff):� �
$ git commit -am "Add␣background␣switching"
[master 7cc405c] Add background switching
1 file changed, 6 insertions(+), 2 deletions(-)� �

22.3.4.3 git log

To show commit logs, we can use the git log³⁴ command. In it’s default form, git
log shows a plain list of commits, printing their hashes, timestamp, author and commit
message. Its output is heavily customizable, and one nice thing we can do is generate

³⁴http://git-scm.com/docs/git-log

487

http://git-scm.com/docs/git-log

22 Version control with Git

a primitive tree view with this incantation (which you could save under an alias³⁵ to
make it shorter, but this is out of scope for this tutorial):� �
$ git log --all --graph --decorate --oneline
* bc636f4 (celebration) Let us celebrate!
| * 7cc405c (HEAD, master) Add background switching
|/
* e84ba14 Add welcome message
* 3ef08e9 Add initial set of files.� �
We see the whole history of the repository here, showing the branch structure, includ-
ing brief commit messages. We can also see the branch tips in parentheses, and also
the current branch (where HEAD points to). We realize that the “Let us celebrate” com-
mit is not yet included in master, so let’s do that now!

22.3.4.4 git merge

We can now merge the celebration branch back into our master branch to make
our celebratory message available there too. This happens with the git merge³⁶ com-
mand. We use git merge <branchname> to merge another branch into the current
branch, like so:� �
$ git merge celebration
Auto-merging src/ofApp.cpp
Merge made by the 'recursive' strategy.
src/ofApp.cpp | 1 +
1 file changed, 1 insertion(+)� �

Git automatically figured out how to merge ofApp.cpp so that master now contains
the modifications from both branches (go ahead and take a look at ofApp.cpp now).
The tree view now looks like this:� �
$ git log --all --graph --decorate --oneline
* 1c6d4aa (HEAD, master) Merge branch 'celebration'
|\
| * bc636f4 (celebration) Let us celebrate!
* | 7cc405c Add background switching
|/
* e84ba14 Add welcome message
* 3ef08e9 Add initial set of files.� �
We can see that the two branches have been merged together successfully, so master
now contains all our modifications. Also note that the celebration branch is unaf-
fected by the merge, it’s still pointing to its original commit.
³⁵http://stackoverflow.com/questions/2553786/how-do-i-alias-commands-in-git
³⁶http://git-scm.com/docs/git-merge

488

http://stackoverflow.com/questions/2553786/how-do-i-alias-commands-in-git
http://git-scm.com/docs/git-merge

22.3 Introduction to Git

Next, we shall find out what happens if merging does not go so smoothly.

22.3.4.5 git reset

First, purely for demonstration purposes, we use git reset³⁷ to undo the merge com-
mit we just made. This can be a dangerous command, because we can erase commits
with it, so we have to be careful. It’s always useful to do a git status immediately
before git reset, just to make sure the repository is in the state we think it is. git
reset --hard HEAD~<N> sets the current branch back by <N> commits, discarding the
rest of the commits in the process if they are not part of another branch. They can still
be recovered using git reflog³⁸, but that’s a bit too complicated to show here. Gener-
ally, it’s hard to really lose things you have previously committed, so if you accidentally
deleted some important history, don’t despair immediately. :-)

In contrast, the --soft flag just moves the HEAD pointer to another commit, but leaves
our working directory and index unchanged. This can be useful e.g. for undoing com-
mits³⁹.

Anyway, let’s reset our master branch back one commit now:� �
$ git reset --hard HEAD~1
HEAD is now at 68d2674 Add background switching� �
You can consult the tree view again to see that the merge commit has disappeared,
and master is back at “Add background switching”. Now, let’s try to make a merge fail.

22.3.4.6 Merge conflicts

Git is pretty smart when merging branches together, but sometimes (typically when
the same line of code was edited differently in both branches) it does not know how to
merge properly, which will result in a merge conflict. It’s up to us to resolve a merge
conflict manually.

Now, let’s create a commit which will create a conflict. We just add a second output line
after the “Hello world” statement. Since in the celebration branch, another statement
was also added right after “Hello world”, Git will not know how to correctly resolve this.
Our cout statement looks like this:� �
$ git diff
diff --git a/src/ofApp.cpp b/src/ofApp.cpp
index f7e3dbc..6e232ba 100644
--- a/src/ofApp.cpp

³⁷http://git-scm.com/docs/git-reset
³⁸http://gitready.com/advanced/2009/01/17/restoring-lost-commits.html
³⁹http://stackoverflow.com/a/927386/599884

489

http://git-scm.com/docs/git-reset
http://gitready.com/advanced/2009/01/17/restoring-lost-commits.html
http://stackoverflow.com/a/927386/599884

22 Version control with Git

+++ b/src/ofApp.cpp
@@ -4,6 +4,7 @@
void ofApp::setup(){

cout << "Hello␣world!";
+ cout << "\nThis␣is␣not␣going␣to␣end␣well!";
}

//--� �
Now we will create a commit (we are still on master):� �
$ git commit -am "Trigger␣a␣conflict"
[master 2608b52] Trigger a conflict
1 file changed, 1 insertion(+)� �

When we attempt to merge celebration into master, bad things happen:� �
$ git merge celebration
Auto-merging src/ofApp.cpp
CONFLICT (content): Merge conflict in src/ofApp.cpp
Automatic merge failed; fix conflicts and then commit the result.� �
When a conflict is detected by Git, it will stop the merging process and put “conflict
markers”⁴⁰ into the conflicted files. Those markers look like this:� �
$ head -n 14 src/ofApp.cpp
#include "ofApp.h"

//--
void ofApp::setup(){

cout << "Hello␣world!";
<<<<<<< HEAD

cout << "\nThis␣is␣not␣going␣to␣end␣well!";
=======

cout << "\nYeah,␣it␣works!";
>>>>>>> celebration
}

//--� �
The part between <<< and === shows the file as it is in HEAD, the current branch we
want to merge into. The part between === and >>> shows the file as it is in the named
branch, in our case celebration. What we have to do now next is resolve the conflict
by implementing the conflicted section in a way which makes sense for our program,

⁴⁰http://git-scm.com/book/en/Git-Branching-Basic-Branching-and-Merging#Basic-Merge-Conflicts

490

http://git-scm.com/book/en/Git-Branching-Basic-Branching-and-Merging#Basic-Merge-Conflicts

22.3 Introduction to Git

remove the conflict markers and save the file. For example, we can make the conflicted
section look like this:� �
void ofApp::setup(){

cout << "Conflict␣averted!";
cout << "\nHello␣world!";
cout << "\nYeah,␣it␣works!";

}� �
After doing this, Git still knows that there has been a conflict, and git status again
tells us what to do next:� �
$ git status
On branch master
You have unmerged paths.
(fix conflicts and run "git commit")
#
Unmerged paths:
(use "git add <file>..." to mark resolution)
#
both modified: src/ofApp.cpp
#
no changes added to commit (use "git␣add" and/or "git␣commit␣-a")� �
Obediently, we run git add src/ofApp.cpp to stage our conflict-free file and mark
the conflict as resolved. Now, we can finish the merge. If we omit the -m <message>
part, git commit will open an editor (which one depends on your setup) with a pro-
posed commit message which mentions the files for which conflicts had occured. You
can either try that way, or just create a self-made commit message directly, as usual:� �
$ git commit -m "Merge␣after␣resolving␣conflict"
[master 29d152e] Merge after resolving conflict� �
All that remains is to check if everything worked alright, and take a last look at our tree
view:� �
$ git status
On branch master
nothing to commit, working directory clean

$ git log --all --graph --decorate --oneline
* 29d152e (HEAD, master) Merge after resolving conflict
|\
| * d9be50b (celebration) Let us celebrate!
* | 2608b52 Trigger a conflict
* | e822ea4 Add background switching
|/

491

22 Version control with Git

* 1964a43 Add welcome message
* f6caa7b Add initial set of files.� �
Congratulations, you have just resolved your first merge conflict! This concludes the
walk-through portion of this chapter, I will continue with more high-level explanations
of Git features.

22.3.4.7 git tag

During your work, you will encounter special commits, which mark significant stations
in your project’s history, for example released versions, or the state of your code when
it was installed somewhere, or handed off to your customer. You can do this easily with
Git tags⁴¹. Use git tag somename to put a tag on the current commit. This tag now
permanently points to that commit, and you can (mostly) use it in Git commands just
like commit hashes and branch names. For example, git checkout v1.2 will check
out the repository’s state (if the tag exists) just like it was when you published version
1.2.

22.3.5 Remote repositories and Github

An important aspect of your work may involve collaboration with others. With Git, this
typically involves one or more remote repositories (short remotes), to which you push
your modifications, and from which you fetch the modifications of others.

One of several popular hosting platforms for Git repositories is Github⁴². Github offers
repository hosting (public and private), project wiki pages, an issue tracker, social fea-
tures, project web pages, etc. OpenFrameworks primarily uses Github to host its source
code repositories⁴³ and the openFrameworks issue tracker⁴⁴.

Delving deeper into Github’s features would lead too far here, so I’ll just outline the
typical operations you will deal with when interacting with Github repositories.

22.3.5.1 Setting up and remotes

To start a project on Github, you have several options:

⁴¹http://git-scm.com/docs/git-tag
⁴²www.github.com
⁴³https://github.com/openframeworks
⁴⁴https://github.com/openframeworks/openFrameworks/issues

492

http://git-scm.com/docs/git-tag
www.github.com
https://github.com/openframeworks
https://github.com/openframeworks/openFrameworks/issues

22.3 Introduction to Git

• If you want to have your own copy of the source code of a project that already
lives online, you fork⁴⁵ that repository, including all history, ending up with a
copy of it under your account.

• If you want to start a fresh project, you can create a new repository⁴⁶. Github will
display instructions for creating an empty local repository, or for connecting the
new repository to an existing local one.

If there’s already a Git repository online somewhere, you can also clone that reposi-
tory⁴⁷ to get a copy of it on your local machine. This command is not limited to Github
repositories, but can be used with all Git repositories, see the git clone docs⁴⁸ for
what you can do with git clone.

The remote repositories are added as so-called remotes to your local repository’s con-
figuration (either automatically, or using git remote add). Think about it as a target
identifier you supply to Git commands if you want to work with remote repositories. A
remote is just an identifier that points to the Github (or other) URL where that reposi-
tory lives.

It is customary that a “parent” repository (i.e. the repository under your Github account)
is called origin, and a repository you forked from is called upstream. You can get the
list of current remotes using git remote⁴⁹ (add -v to see more info).

22.3.5.2 Fetching and pulling

Now that you have a remote repository configured, you can interact with it via git push
and git fetch. As the names imply, git fetch⁵⁰ fetches branches from a remote, so
to get the latest version of the master branch of your Github repo, you’d do git fetch
origin master (the syntax is git fetch <remote> <branchName>). If you wanted to
obtain the newest modifications from your upstream remote, instead, you’d do git
fetch upstream master. After this has finished, you’ll have an additional branch
called origin/master in your repository. You can check this with git branch -a -
remote branches are listed with a remotes/ prefix.

To integrate the newest changes of this remote branch into your local master, you
first do git checkout master, to be sure you’re on the correct branch. Then, you
should make sure that the state of the repository is in order, using git status.
Next, you merge the remote branch, just like any other branch, using git merge
origin/master. If all went well, you now have all the latest changes integrated into

⁴⁵https://help.github.com/articles/fork-a-repo
⁴⁶https://help.github.com/articles/create-a-repo
⁴⁷https://help.github.com/articles/fork-a-repo#step-2-clone-your-fork
⁴⁸http://git-scm.com/docs/git-clone
⁴⁹http://git-scm.com/docs/git-remote
⁵⁰http://git-scm.com/docs/git-fetch

493

https://help.github.com/articles/fork-a-repo
https://help.github.com/articles/create-a-repo
https://help.github.com/articles/fork-a-repo#step-2-clone-your-fork
http://git-scm.com/docs/git-clone
http://git-scm.com/docs/git-remote
http://git-scm.com/docs/git-fetch

22 Version control with Git

your master branch. If not, you’ll probably have to fix some conflicts, as you already
learned above.

A commonly used shortcut for the subsequent operations git fetch and git merge
is git pull⁵¹ - you can use that instead if you like. Personally, I tend to use fetch
and merge separately, as it gives you a bit more control over what happens.

22.3.5.3 Pushing

When you have commits or branches you want to share with others, you will push them
onto your remote repository (e.g. on Github) using git push⁵², for example with git
push origin awesome-feature. If the branch does not exist yet, it gets created in the
remote repository, else it gets updated. Others can then fetch the new branch from
your remote repository to integrate into their repositories. Note that Git tags are only
pushed to a remote if you supply the --tags flag.

22.3.5.4 Pull requests

A central feature of the Gitub collaboration model are pull requests⁵³. Pull requests
(or “PRs” for short) are ways to get your personal changes integrated into a repository
you forked (it’s important that you forked the repository into your own account instead
of getting a copy by other means).

Let’s walk through this with an example: Say you found a bug in openFrameworks⁵⁴,
and want to fix it. You have already forked openFrameworks to your account, created
a local copy, and created a branch from master, called fix-uglybug, following our
contribution guidelines⁵⁵ (ideally there’s a bug report first where we discuss the proper
way to fix the bug, but let’s leave that part aside for now). To get the openFrameworks
developers to review (and hopefully integrate) your bugfix, you push your branch to
your remote (git push origin fix-uglybug), then switch to the freshly uploaded
branch in the Github web interface, and click the green “compare, review, create a pull
request” button. Following the instructions, you will be able to compare your branch
to the target branch (typically openFrameworks’ master branch), review the changes
you made, type up a description of the pull request, and send it.

A pull request enables an easy review of your changes and offers a discussion plat-
form where the changes can be discussed, updated, and finally merged with one click,
incorporating your changes into the upstream repository.

⁵¹http://git-scm.com/docs/git-pull
⁵²http://git-scm.com/docs/git-push
⁵³https://help.github.com/articles/using-pull-requests
⁵⁴https://github.com/openframeworks/openFrameworks
⁵⁵https://github.com/openframeworks/openFrameworks/blob/master/CONTRIBUTING.md

494

http://git-scm.com/docs/git-pull
http://git-scm.com/docs/git-push
https://help.github.com/articles/using-pull-requests
https://github.com/openframeworks/openFrameworks
https://github.com/openframeworks/openFrameworks/blob/master/CONTRIBUTING.md

22.4 Popular GUI clients

22.4 Popular GUI clients

While working with the console commands offers the whole power of Git, it is some-
times more convenient to do at least part of the version control work in an application
with a GUI. There are a couple of GUI applications available (depending on platform),
and which one you use is often a matter of taste (and functionality of the individual
programs), so I will just enumerate a couple of popular candidates. There’s also a
curated list of applications here⁵⁶, and a pretty exhaustive list here⁵⁷.

• git-gui⁵⁸ and gitk⁵⁹ are simple interfaces distributed with Git.
• Github offers clients for Windows⁶⁰ and Mac⁶¹ which also offer integration with
Github (not only Git).

• Gitg⁶² is an open-source Git GUI for Linux.
• Tower⁶³ is a Git GUI for Mac.
• GitExtensions⁶⁴ is an open-source Git GUI for Windows.
• smartGit⁶⁵ runs on Windows, Mac, Linux.

You should try a few of the options and use what you like best. Personally, I use a
combination of console commands and Gitg on Linux. I use the GUI mainly for branch
navigation, selecting and staging modifications, and committing, and the command
line interface for working with remotes and more complicated operations.

22.5 Conclusion

22.5.1 Tips & tricks

This section contains a loose collection of tips and tricks around avoiding common
pitfalls and working with Git:

• Collaborating with users using different operating systems can be tricky because
MacOS/Linux and Windows use different characters to indicate a new line in files
(\n and \r\n, respectively). You can configure Git according to existing guide-
lines⁶⁶ to avoid most problems.

⁵⁶http://git-scm.com/downloads/guis
⁵⁷https://git.wiki.kernel.org/index.php/InterfacesFrontendsAndTools#Graphical_Interfaces
⁵⁸http://git-scm.com/docs/git-gui
⁵⁹http://git-scm.com/docs/gitk
⁶⁰http://windows.github.com/
⁶¹http://mac.github.com/
⁶²https://wiki.gnome.org/Apps/Gitg
⁶³http://www.git-tower.com/
⁶⁴http://code.google.com/p/gitextensions/
⁶⁵http://www.syntevo.com/smartgithg/
⁶⁶https://help.github.com/articles/dealing-with-line-endings

495

http://git-scm.com/downloads/guis
https://git.wiki.kernel.org/index.php/InterfacesFrontendsAndTools#Graphical_Interfaces
http://git-scm.com/docs/git-gui
http://git-scm.com/docs/gitk
http://windows.github.com/
http://mac.github.com/
https://wiki.gnome.org/Apps/Gitg
http://www.git-tower.com/
http://code.google.com/p/gitextensions/
http://www.syntevo.com/smartgithg/
https://help.github.com/articles/dealing-with-line-endings

22 Version control with Git

• Some editors automatically remove trailing whitespace in files when saving. This
can lead to commits containing unintentional modifications, which can make
browsing a file’s change history more confusing. Most relevant Git commands
(e.g. git diff) accept the -w flag to ignore whitespace changes.

• When you realize that you want to add some more changes to your last commit,
you can use the --amend flag when committing to add your staged changes to
the last commit and adjust the commit message. This rewrites that commit, so
only do that if you haven’t pushed your commit yet!

• When you want to stage only part of the modifications in a file, you can use
git add -p <file>. This switches to an interactive view where you can decide
whether or not to add each change chunk.

• Git can be told to colorize the terminal output⁶⁷, which is pretty helpful.
• Use git rm⁶⁸ and git mv⁶⁹ when removing or moving files, respectively. If you
don’t, the index does not get properly updated. You can run git add -u to up-
date the index manually.

22.5.2 Further reading

Now we are at the end of this quick introduction to Git, and while I have covered the
most important things you need to know to get you up and running, I have only touched
the surface of what Git can do.

Probably the most important thing left now is to point out where you can learn more
about Git, and where you can turn to when things don’t work out as expected:

• Learning resources:

– GitRef⁷⁰ is an awesome short primer on Git fundamentals.
– The Git home page⁷¹ is probably the most unified but comprehensive online

resource. Among others, it hosts:
– The free ProGit book⁷², readable online. Awesome to get in-depth informa-

tion about all things Git.
– The Git reference⁷³, which has the documentation about all Git commands,

their options and usage.
– Try Git⁷⁴ is an excellent interactive tutorial.
– Github offers a Hello World⁷⁵ introduction to Git and Github.

⁶⁷http://git-scm.com/book/en/Customizing-Git-Git-Configuration#Colors-in-Git
⁶⁸http://git-scm.com/docs/git-rm
⁶⁹http://git-scm.com/docs/git-mv
⁷⁰http://gitref.org/
⁷¹{[}git-scm.com
⁷²http://git-scm.com/book
⁷³http://git-scm.com/docs
⁷⁴http://try.github.io/levels/1/challenges/1
⁷⁵https://guides.github.com/activities/hello-world/

496

http://git-scm.com/book/en/Customizing-Git-Git-Configuration#Colors-in-Git
http://git-scm.com/docs/git-rm
http://git-scm.com/docs/git-mv
http://gitref.org/
{[}git-scm.com
http://git-scm.com/book
http://git-scm.com/docs
http://try.github.io/levels/1/challenges/1
https://guides.github.com/activities/hello-world/

22.5 Conclusion

– There are some websites available which visualize/animate the workings of
Git, see here⁷⁶, here⁷⁷ or here⁷⁸.

– Gitignore patterns for a lot of different situations can be found e.g. here⁷⁹
or at gitignore.io⁸⁰.

• Get help:

– Google⁸¹ the errors you get!
– Stack Overflow⁸² is an awesome resources to find answers to problems you

encounter (probably someone had the same problem before), and to ask
questions yourself! There’s even a separate tag⁸³ for Git.

– If you’re not successful with Stackoverflow, the openFrameworks forum has a
separate category called “revision control”⁸⁴ for questions around this topic.

Finally, I hope that this chapter made you realize how useful it can be to integrate
version control into your creative coding workflow, and that you will one day soon look
fondly back on the days of zip files called Awesome_project_really_final.zip.

⁷⁶http://www.wei-wang.com/ExplainGitWithD3/
⁷⁷http://pcottle.github.io/learnGitBranching/
⁷⁸http://ndpsoftware.com/git-cheatsheet.html
⁷⁹http://github.com/github/gitignore
⁸⁰www.gitignore.io
⁸¹https://www.google.com/
⁸²http://stackoverflow.com/
⁸³http://stackoverflow.com/questions/tagged/git
⁸⁴http://forum.openframeworks.cc/category/revision-control

497

http://www.wei-wang.com/ExplainGitWithD3/
http://pcottle.github.io/learnGitBranching/
http://ndpsoftware.com/git-cheatsheet.html
http://github.com/github/gitignore
www.gitignore.io
https://www.google.com/
http://stackoverflow.com/
http://stackoverflow.com/questions/tagged/git
http://forum.openframeworks.cc/category/revision-control

23 ofSketch

By Brannon Dorsey

Edited by Michael Hadley¹.

Figure 23.1: Hello World Example

23.1 What is ofSketch?

ofSketch² is a barebones development environment created specifically for building
and running openFrameworks sketches. Its a minimal installation openFrameworks
application that allows you to spendmore time coding and less time with configuration.

One of the main goals in developing ofSketch is to decrease the barriers to entry for
openFrameworks. For this reason, it should be noted that ofSketch is primarily geared
towards beginners and new coders.

¹http://www.mikewesthad.com/
²https://github.com/olab-io/ofSketch

499

http://www.mikewesthad.com/
https://github.com/olab-io/ofSketch

23 ofSketch

23.1.1 What is ofSketch Good For?

• Teaching or learning openFrameworks
• Making the leap³ from Processing⁴ to openFrameworks
• Rapid code prototyping
• Creating code snippets, experiments, and examples
• Running openFrameworks on the Raspberry Pi⁵

23.1.2 What is ofSketch NOT Good For?

• Replacing a professional IDE like Xcode, Code::Blocks, Visual Studio, etc…
• Building sizable projects or applications

23.1.3 How does ofSketch work?

Figure 23.2: App to Browser Diagram

ofSketch works by internally communicating back and forth between the ofSketch ap-
plication and the browser editor. The application, among other things, reads/writes
files to your computer, and compiles and launches your projects. The browser edi-
tor acts as the graphical user interface (GUI), where you code, run, and manage your
projects. When you interact with ofSketch you are doing so from the browser, however
the distinction between the application and the browser should not be overlooked. For
more info, check out the ARCHITECTURE.md⁶ file on the ofSketch GitHub repository.

³http://openframeworks.cc/tutorials/first%20steps/002_openFrameworks_for_processing_users.html
⁴http://processing.org
⁵http://www.raspberrypi.org/
⁶https://github.com/olab-io/ofSketch/blob/master/ARCHITECTURE.md

500

http://openframeworks.cc/tutorials/first%20steps/002_openFrameworks_for_processing_users.html
http://processing.org
http://www.raspberrypi.org/
https://github.com/olab-io/ofSketch/blob/master/ARCHITECTURE.md

23.2 Download

23.2 Download

Visit the ofSketch releases page⁷ to download the ofSketch app for your platform.

ofSketch comes packaged with the following files:

• CHANGELOG.md⁸
• CONTRIBUTING.md⁹
• data/
• LICENSE.md¹⁰
• ofSketch app
• README.md¹¹

It is important for the ofSketch app and the “data” folder to stay in the same directory.
I recommend that you leave the app in the uncompressed folder that you download.

Double-click ofSketch to launch the editor. If you are on a Mac, you may need to right
click the app, and then press “Open”.

That’s it! Go code.

23.2.1 Getting Started With ofSketch

Code in ofSketch looks a bit different than what you may be used to with openFrame-
works. If you are new to openFrameworks, great! We think that ofSketch code is easier
to learn than the normal .h and .cpp openFrameworks code structure.

23.2.2 ofSketch Style Code

ofSketch uses “header style¹²” C++, where code implementation is written along with
declarations inside of the header file, instead of the matching .cpp source file. If this
doesn’t make since to you, don’t worry. Essentially, this allows us to write simple, easy-
to-read code, that is great for beginners!

23.2.3 Project File

Every ofSketch project starts with an empty project file that looks like this:

⁷https://github.com/olab-io/ofSketch/releases
⁸https://github.com/olab-io/ofSketch/blob/master/CHANGELOG.md
⁹https://github.com/olab-io/ofSketch/blob/master/CONTRIBUTING.md
¹⁰https://github.com/olab-io/ofSketch/blob/master/LICENSE.md
¹¹https://github.com/olab-io/ofSketch/blob/master/README.md
¹²http://hanxue-it.blogspot.com/2014/04/why-include-cc-implementation-code-in.html

501

https://github.com/olab-io/ofSketch/releases
https://github.com/olab-io/ofSketch/blob/master/CHANGELOG.md
https://github.com/olab-io/ofSketch/blob/master/CONTRIBUTING.md
https://github.com/olab-io/ofSketch/blob/master/LICENSE.md
https://github.com/olab-io/ofSketch/blob/master/README.md
http://hanxue-it.blogspot.com/2014/04/why-include-cc-implementation-code-in.html

23 ofSketch

� �
void setup() {

// put your setup code here, to run once:

}

void draw() {
// put your main code here, to run once each frame:

}� �
If you are coming from Processing, this should be extremely familiar. To add global
functions and variables, simply add them to this project file. You don’t need to prefix
any identifiers (variables, functions, etc…) with ofApp.� �
// global variables go up here
std::string text;

void setup() {
// put your setup code here, to run once:
text = "Hello␣World!";
printHelloWorld(); // function call

}

void draw() {
// put your main code here, to run once each frame:

}

// global functions go down here
void printHelloWorld() {

cout << text << endl;
}� �
23.2.4 Classes

Using classes in ofSketch is easy! Press the “+” button in the tab bar in the ofSketch
browser window to add a new class. When you do this a class template is automatically
generated for you. Here is an example class template for a “Particle” class:� �
class Particle{

public:

Particle(){

}

502

23.2 Download

};� �
This is essentially a regular .h file. The default constructor is explicitly defined in the
generated template, but adding class members is easy. Just remember to both declare
and implement all of the functions that you write in this file. Here is an example of a
basic “Particle” class that could be used in a particle system.� �
class Particle{

public:

ofVec2f location;
ofVec2f velocity;
ofVec2f acceleration;

ofColor color;

float maxSpeed;

int radius;

// default constructor
Vehicle() {};
// overloaded constructor
Vehicle(float x, float y) {

acceleration = ofVec2f(0,0);
velocity = ofVec2f(0, -2);
location = ofVec2f(x,y);
color = ofColor(ofRandom(255), 0, 255);
radius = 6.0;

maxSpeed = 4;
}

void update() {

velocity += acceleration;
velocity.limit(maxSpeed);
location += velocity;
acceleration *= 0;

}

void draw() {

ofFill();
ofSetColor(color);
ofCircle(location.x, location.y, radius);

}

503

23 ofSketch

// etc...

};� �
23.2.5 Includes

Every ofSketch file includes “ofMain.h” by default. To include custom classes, simply
put #include "ClassName.h" at the top of any file that needs to use that class. Below
is an example of how to include the Particle class file above in the project file.� �
#include "Particle.h"

Particle p;

void setup() {
// put your setup code here, to run once:
// create a particle at the center
p = Particle(ofGetWidth()/2, ofGetHeight()/2);

}

void update() {
p.update();

}

void draw() {
// put your main code here, to run once each frame:

p.draw();
}� �
Here we include the “Particle.h” file, use it to instantiate a Particle object “p”, and then
place it in the middle of the screen.

Note that we also added an update function. As you may know by now, it is customary
in openFrameworks to separate operations that update logic from operations that ren-
der graphics to the screen. This is for performance reasons, however, it is not necessary,
and all of the code placed in void update() can instead live inside of void draw()
if you prefer.

23.2.6 Examples

ofSketch comes packaged with a few basic examples that illustrate the ofSketch code
style. Most of them are ported from the regular openFrameworks examples, but there

504

23.3 Sketch Format

Figure 23.3: Open Project

are a few new ones too. Press the “Open Project” button inside ofSketch to open one
of them.

While the code in this chapter highlights the difference between ofSketch code and a
normal implementation of C++ code, reviewing the examples should give you a better
idea of the general ofSketch style.

23.3 Sketch Format

Figure 23.4: Sketch Folder Structure

If you take a look at an app in your Projects folder, you will see a “sketch” directory. This
is where all of the ofSketch source files are saved, each with a “.sketch” file extension.
When you use ofSketch, you are editing the files in this directory. Whenever you run

505

23 ofSketch

an app from inside ofSketch, all of the files in the “sketch” directory are processed to
generate source files inside of the “src” directory.

Because of this workflow, it is important to edit ofSketch projects through ofSketch
only. You could easily get yourself into trouble if you edited an ofSketch project with
Xcode (modifying the files in the “src” directory) and then opened it in ofSketch again,
pressed the play button, and then overwrote all of our changes.

Soon, ofSketch will include fancy project import and export feature which will allow
you to import/export a project from/to a professional IDE target of your choice. Until
then, it is best to just copy a project if you want to edit it with something other than
ofSketch.

23.4 Remote Coding

One of the highlights of the ofSketch browser editor is the ability to edit code on a
remote machine through a network connection. This is especially helpful when cod-
ing with the Raspberry Pi, or when tweaking live installation code. The figure below
illustrates this in practice.

Figure 23.5: Remote Coding Diagram

1. Raspberry Pi running an ofSketch app that draws a landscape to a connected to
a TV

2. Laptop with web browser pointed to RPi’s IP address and port 7890 (e.x.
http://192.168.0.204:7890)

To code with ofSketch remotely, start the ofSketch application on the machine that
you want to run the openFrameworks app. In order to connect to ofSketch from that
machine, you need to know its unique IP address on the network. You can use an
application like Bonjour Browser¹³ on device 2 to discover device 1’s IP address.

¹³https://www.google.com/webhp?sourceid=chrome-instant&ion=1&espv=2&ie=UTF-8#q=bonjour+
browser

506

https://www.google.com/webhp?sourceid=chrome-instant&ion=1&espv=2&ie=UTF-8#q=bonjour+browser
https://www.google.com/webhp?sourceid=chrome-instant&ion=1&espv=2&ie=UTF-8#q=bonjour+browser

23.5 Future

Once you have the IP address of device 1, open a web browser on device 2 and visit
http://CPU_1_IP_ADDRESS:7890.
You can now create, edit, and run projects using device 2.

23.5 Future

The ofSketch project is still in its infancy. In fact, at the time of writing this chapter,
the most recent ofSketch release is v0.3.2. Undoubtedly the application will change as
we approach a stable release (v1.0), but we are particularly excited about some of the
things we have in store. Below is a list of planned features to watch out for over the
next year.

23.5.1 App Export

App Export will allow users to export executables and resources that can be transferred
to and run on other computers. The exported project will be downloaded as zipped
bundle for easy transport.

23.5.2 Project File Export

Project File Export will use an integrated version of the openFrameworks Project Gen-
erator in the ofSketch app to export a project for Xcode, Code::Blocks, and Visual Studio
2012. These project files will be useful to allow new users to access more advanced
editing features available in professional IDEs.

23.5.3 Custom .h & .cpp Files

To aid in the transition from ofSketch to more advanced IDEs, ofSketch users will be
given the option to create and work with .h and .cpp files. Eventually, using this
functionality will be as simple as including the appropriate extension when creating
the file.

23.5.4 Clang Indexed Autocomplete

We intend to use some of these¹⁴ Clang resources to index the openFrameworks Core
and use it to better provide autocomplete and syntax highlighting tools in the editor.
Ideally, this system would also auto-index user code.

¹⁴https://github.com/brannondorsey/ofSketch/wiki/Clang-Resources

507

https://github.com/brannondorsey/ofSketch/wiki/Clang-Resources

24 Installation up 4evr - OSX

The original version of the article is here¹.

This article is intended as a starter guide to help keep a software based installation
up for as long as possible in a public facing setting. This guide applies primarily to
software running on Mac OSX 10.8+. The software is likely running as a fullscreen,
single display app. Although I hope many different people find parts of the article
useful in terms of prepping for the challenge of long term installs.

At work I recently had to set up a four installations of different configurations that
would need to run all day, every day, 24 hours a day for a couple months with as few
crashes or glitches as possible and without anyone going to check on them. This is
something that a lot of media artists need to do all the time, and there are a bunch of
different tricks and tips to keeping things up for an extended period, I figured I’d share
my findings. There are alternate ways to do many of these tasks and this is only one
road so please share some tips you’ve picked up out in the field down in the comments
box below.

I had to do several searches in a couple different places to find all the information I
needed to keep everything consistently up and bug free. Luckily most of the installa-
tions I was dealing with this time were fairly light in terms of resources and complica-
tions, but it’s always best practices to have a safety net.

I usually run these off brand new, unboxed computers so this is sort of starting from
scratch. Most of the things I point out are set to the opposite by default.

Tip: if you’re doing multiple computers, do these prep steps on one of them and just
boot the others into target disk mode and use something like Carbon Copy Cloner² to
mirror the first one on the next so everything is as consistent as possible.

24.1 Step 1: Prep your software and the computer

When building your software or whatever it might be, always keep the long running
installation in mind. Plan which things will need to be adjusted by whoever is watching
over the installation from the beginning (or at least don’t save it for the end). In my
experience, keep it as simple as possible, so that it’s easy for the caretaker to get in

¹http://blairneal.com/blog/installation-up-4evr/
²http://www.bombich.com/

509

http://blairneal.com/blog/installation-up-4evr/
http://www.bombich.com/

24 Installation up 4evr - OSX

there to fix or adjust what they need without opening Xcode and compiling or even
exiting out of your app. Time you spend now to make things simple will save you hours
of remote debugging when something breaks.

You’ll need to go through and turn off or disable several different automatic settings
to keep things from popping up over top of your application. This can differ depending
on whether you’re running 10.6, 10.7, 10.8, 10.9 etc etc.

In System Preferences:

• Desktop and Screensaver: Disable your screensaver. Set it’s time to “Never.” I
also suggest changing your desktop background to either black/a screenshot of
your app/you client’s logo - you can even set these to change automatically -
remember - it’s not broken until someone notices :)

• Energy Saver: Turn Display Sleep and Computer Sleep to Never. Enable “Start
up automatically after power failure” and “Restart automatically if the computer
freezes” (these are only available in 10.7 and later)

• Users and Groups: ->Login Options: Enable Automatic Login
• Software update: Disable automatic updates.
• Notifications: Disable any potential Notification Center alerts (banners or pop-
ups) from specific apps

• Sharing: If you are running your main computer without a monitor or in an inac-
cessible area, don’t forget to turn on File sharing and Screen sharing. This will
allow you to access the computer and control it if you’re on the same network
(optional if you’re concerned about security).

• Network: If you don’t need remote access or don’t need Internet access for the
installation, it’s not a bad idea to disable the Wifi so the “please select a wireless
network” window doesn’t pop up when you least expect it. You can also turn off
the option to ask you to join a new network if the proper one isn’t found.

• Bluetooth :If running without a mouse or keyboard plugged in, sometimes you
can get the annoying ”Bluetooth keyboard/mouse setup” pop up over your ap-
plication. You can temporality disable these by going to the advanced settings
within the Bluetooth Preferences. See below for it’s location in 10.6.

• Security: I would make sure that “Disable Automatic Login” is unchecked so you
don’t hit any surprises on reboots. If you’re really paranoid, you can even disable
things like the IR remote receiver that still exists on some macs and definitely on
Macbooks. This would keep pranksters with Apple TV remotes from “Front Rowing”
your installation. To disable, go to Security->General->Advanced (in >10.8) and
“Disable remote control IR receiver”.

You can also disable the “This Application Unexpectedly Quit” and the subsequent
bug report that comes with it by running this command in terminal OR renaming the
Problem Reporter app:� �
sudo chmod 000 /System/Library/CoreServices/Problem\ Reporter.app� �
510

24.1 Step 1: Prep your software and the computer

Figure 24.1: BluetoothSettings

Figure 24.2: SecuritySettings

511

24 Installation up 4evr - OSX

Figure 24.3: SharingSettings

Figure 24.4: Login_items

512

24.2 Step 2: Boot into your software

Another useful tool for modifying certain OSX .plists for disable or enabling certain
things is Tinkertool³ You can use this to disable or enable certain things that System
Preferences doesn’t cover.

I would also look at this filepath and you can rename files in here to temporarily disable
them on the computer you’re using: /System/Library/CoreServices

You can rename “Notification Center” to “Notification Center_DEACTIVATE” or something
(or you can move it) - and then you won’t get any obnoxiously “helpful” Notification
Center popups.

If necessary, You can also hide all of the desktop icons with this terminal command:� �
defaults write com.apple.finder CreateDesktop -bool false� �

24.2 Step 2: Boot into your software

Things get unplugged, power goes out, not everyone has budget or space for a battery
backup etc etc. Above, I covered how to have everything reboot automatically after
power failures or freezes, but you’ll also need your app to be ready to go from boot
and not leave the desktop open to prying eyes. There are many ways to have your
application load automatically - the simplest is using OSX’s built in tools: In the System
Preferences “Accounts” panel, select “Login Items” and drag your application into there
to have it open automatically on launch.

24.3 Step 3: Keep it up (champ!)

There are several ways to make sure your application goes up and stays up -

Launchd

Using Launch Daemons is an alternate way to get apps to load on boot and to contin-
uously re-open them if they go down. Launchd plists are very useful alternatives to
cron jobs and can be used to run things on a periodic basis or on calendar days. You
could achieve similar results with a combination of automator and iCal, but it depends
on what you’re comfortable with.

Here is an Apple Doc⁴ on using Launch Agents and Launch Daemons in various ways.

³http://www.bresink.com/osx/TinkerTool.html
⁴http://developer.apple.com/library/mac/#documentation/MacOSX/Conceptual/BPSystemStartup/
Chapters/CreatingLaunchdJobs.html

513

http://www.bresink.com/osx/TinkerTool.html
http://developer.apple.com/library/mac/#documentation/MacOSX/Conceptual/BPSystemStartup/Chapters/CreatingLaunchdJobs.html
http://developer.apple.com/library/mac/#documentation/MacOSX/Conceptual/BPSystemStartup/Chapters/CreatingLaunchdJobs.html

24 Installation up 4evr - OSX

Figure 24.5: Login Items

The difference between a Launch Daemon and a Launch Agent⁵ (Basically whether you
need it to run when a user is logged in or not…for most simple options like launching
a regular app, you’ll just want a Launch Agent)

Also note (!) that you may need to point your launch daemon to a file within your .app
package, not just the app itself - you have to point it to the file in the MacOS folder
inside the .app package (right-click your app and select “Show package Contents”) Oth-
erwise you might be wondering why the launchdaemon isn’t launching your app.

A launchd example from admsyn: https://gist.github.com/4140204

Of course you could make the launchd plist yourself for free from a template like above.
You can read all about themwith the command “man launchd.plist” typed into terminal
to get an idea of what each toggle controls. One quick method to setting up Launchd
is to use Lingon ($4.99 in the App Store) or Lingon X⁶

In Lingon, hit the + to create a new launchd plist. Just make it a standard launch agent.
Now Set up your plist like so:

One additional/optional thing you can add to this is to put an additional key in the plist
for a “Successful Exit”. By adding this, your app won’t re-open when it has detected
that it closed normally (ie You just hit escape intentionally, it didn’t crash). Can be
useful if you’re trying to check something and OS X won’t stop re-opening the app on

⁵http://techjournal.318.com/general-technology/launchdaemons-vs-launchagents/
⁶http://www.peterborgapps.com/lingon/

514

http://techjournal.318.com/general-technology/launchdaemons-vs-launchagents/
http://www.peterborgapps.com/lingon/

24.3 Step 3: Keep it up (champ!)

Figure 24.6: LingonSetup

515

24 Installation up 4evr - OSX

you. To easily add this to the key, just hit “expert mode” on the bottom of the Lingon
window after selecting your newly made script on the left. Then modify the relevant
bits highlighted in the screenshot:

Figure 24.7: LingonplistSetup

Shell script+Cron Job method

(I got the following super helpful tip from Kyle McDonald⁷)

This method is sort of deprecated in relation to the launchd method - you can run
shell scripts with Lingon and launchd in the same manner as what we’ve got here.
Shell scripting is your best friend. With the help of the script below and an application
called CronniX (or use Lingon) , you will be able to use a cronjob to check the system’s
list of currently running processes. If your app does not appear on the list, then the
script will open it again, otherwise it won’t do anything. Either download the script or
type the following into a text editor, replacing Twitter.app with your app’s name and
filepath. Don’t forget the “.app” extension in the if statement!:� �
\#!/bin/sh if [$(ps ax | grep -v grep | grep "Twitter.app" | wc -l)

-eq 0] then
echo "Twitter␣not␣running.␣opening..."
open /Applications/Twitter.app else

⁷http://kylemcdonald.net/

516

http://kylemcdonald.net/

24.3 Step 3: Keep it up (champ!)

echo "Twitter␣running" fi� �
Save that file as something like “KeepOpen.sh” and keep it next to your application or
somewhere convenient.

After creating that file, you’ll need to make it executable. To do this, open the Terminal
and in a new window type “chmod +x” and then enter the path to the shell script you
just created (you can either drag the shell script into the terminal window or manually
type it). It would look something like this:� �
Laser-MacBook-Pro:~ laser$ chmod +x /Users/laser/Desktop/KeepOpen.sh� �
After you have made it executable, you’re now ready to set it up as a cronjob. Tip: to
test the script, you can change the extension at the end to KeepOpen.command as an
alternative to opening it with Terminal, but the same thing gets done.

Cronjobs are just low level system tasks that are set to run on a timer. The syntax for
cronjobs is outside of the scope of this walkthrough, but there are many sites available
for that. Instead, the application CronniX can do a lot of the heavy lifting for you.

After downloading CronniX, open it up and create a new cronjob. In the window that
opens, in the command window, point it to your KeepOpen.sh file and check all of the
boxes in the simple tab for minute, hour, month, etc. This tells the job to run every
minute, every hour, every day, every month. If you want it to run less frequently or at a
different frequency, play around with the sliders.

Now just hit “New” and then make sure to hit “Save” to save it into the system’s crontab.
Now if you just wait a minute then it should open your app every minute on the minute.
Maybe save this one for the very end if you have more to do :)

This is a great tool if there is an unintended crash because the app will never be down
longer than a minute.

Non-Cronjob - Shell Script Method� �
\#!/bin/bash

while true
do
#using open to get focus
echo "Trying␣to␣open␣empty␣example"
open -a emptyExample
sleep 10
done� �
Just type this into a plaintext document and save it as something like ”KeepMyAppAlive-
Plz.command” and then use chmod as above to make the file executable and then drop
this in your login items as above. This one will just continuously try and open your app

517

24 Installation up 4evr - OSX

Figure 24.8: Cronnix_link

518

24.4 Step 4: Reboot periodically

every 10ms, but if it is already open, the OS knows to not try opening it a second, third,
fourth time.

Make sure to check the Console.app for any errors that may have come through when
no one caught them, whenever you check the installation in person or remotely. This
is not a fix-all for buggy programming, just a helper to keep things running smooth.
The more things you can do to leave yourself notes about why the crash happened,
the faster you can address the core issue.

Applescript is also a very solid choice for doing some more OS specific work in terms
of having odd menus clicked or keypresses sent in some order.

24.4 Step 4: Reboot periodically

This one is a little more preventative, or maybe superstitious so hopefully someone
can point out a concrete reason why this is a good idea. Depending on your app and
the amount of stuff it reaches into, there could be some memory leaks or other OS
bugs that you haven’t accounted for. Rebooting every day or week is a good idea to
keep everything tidy, system wise.

The simplest option by far would be to go to System Preferences->Energy Saver and
then click “Schedule…” and enter in some values if you need to turn the computer off
to rest for a longer period of time to save it some stress when it might not be used at
night time or something. Heat can do funny things sometimes, so if you have a chance
to get your computer to rest and the time to test it, definitely give this a shot…saves
some energy too which is nice.

Figure 24.9: Auto-reboot

You could also set up another shell script with a crontab as above with CronniX that
reboots the system with as often as you specify.

Another option (if you don’t want to deal with the terminal and shell scripting) is to use
iCal to call an Automator iCal event. This method is perhaps a little easier to schedule

519

24 Installation up 4evr - OSX

and visualize when you will reboot. Within Automator, create a new file with the iCal
event template to do something like this:

Figure 24.10: Automator Shell Script

Run it to see if it does what you expect and then save it out. When you save,it will open
in iCal as an action that gets opened. Just set it to repeat as often as you’d like. You
can also set things like having it email you when it reboots or runs the script.

If you’d like to just close your programs and re-open them and there is a background
and foreground do something like this (pauses are so the quitting and re-opening stuff
has time to actually execute):

24.5 Step 5: Check in on it from afar

There are a bunch of options here from various paid web services (like Logmein⁸ or
Teamviewer⁹), to VNC (many options for this: RealVNC¹⁰ and Chicken of the VNC tend
to come up a bunch) to SSHing¹¹. The choice here depends on your comfort level and
how much you need to do to perform maintenance from far away. Also - see below for
tips on logging the status of your app as an alternative way

⁸http://www.logmein.com/
⁹http://teamviewer.com/
¹⁰http://realvnc.com/
¹¹http://www.mactricksandtips.com/2009/06/ssh-into-your-mac.html

520

http://www.logmein.com/
http://teamviewer.com/
http://realvnc.com/
http://www.mactricksandtips.com/2009/06/ssh-into-your-mac.html

24.5 Step 5: Check in on it from afar

Figure 24.11: enter image description here

521

24 Installation up 4evr - OSX

Leaving a Dropbox connected to the computer and your own is super useful for file
swaps between the two computers. Althoughmost remote screensharing services have
file sharing built in, Dropbox is just a nice, fairly transparent option.

24.6 Step 6: Test, test, test.

You’ve already tested and perfected your software for the installation, so make sure to
test all of the above methods and automatic scripts in as realistic manner as you can
before you leave it alone for the first day at school.

You can’t account for everything, so don’t beat yourself up if something does eventually
happen, but this list will hopefully alleviate a little bit of frustration. Good luck!

24.7 Additional Tips: Logging

If you have an installation that runs for weeks or months, you might want a way to keep
tabs on it that doesn’t involve remotely logging in and checking on it. A good thing to
have would be to have something on the system that writes certain info to a text file
(kept on a linked Dropbox), or better write that file to a web server that you can then
check.

There are a couple things you can do depending on what you want to know about the
state of your installation.

There is a terminal command you can use to get a list of all of the currently running
processes on your computer:� �
ps aux (or ps ax)� �
(more info above ps commands here¹²) – Further more you can filter this list to only
return applications you’re interested in learning about:� �
ps aux | grep "TweetDeck"� �
This will return a line like this:� �
USER PID %CPU %MEM VSZ RSS TT STAT STARTED

TIME COMMAND
laser 71564 0.4 1.7 4010724 140544 ?? S Sun03PM

14:23.76 /Applications/TweetDeck.app/Contents/MacOS/TweetDeck
-psn_0_100544477

¹²https://developer.apple.com/library/mac/documentation/Darwin/Reference/ManPages/man1/ps.1.
html

522

https://developer.apple.com/library/mac/documentation/Darwin/Reference/ManPages/man1/ps.1.html
https://developer.apple.com/library/mac/documentation/Darwin/Reference/ManPages/man1/ps.1.html

24.7 Additional Tips: Logging

laser 95882 0.0 0.0 2432768 600 s000 S+ 12:11PM
0:00.00 grep TweetDeck� �

Now you have the following useful info: CPU usage, Memory usage (as percentage of
total memory), Status, Time Started, Time Up
All that is left is to write this output to a text file, which you can do with a line like this:� �
ps aux | grep 'TweetDeck' >>

/Users/laser/Dropbox/InstallationLogs/BigImportantInstall/Number6ProcessLog.txt� �
This line basically says - tell me the open processes (px aux) - only give me the lines
that have “Tweetdeck” in them (grep Tweetdeck) - and then append them to a text file
located at this location (>> path_to_text_file)
Now we just need to make this an executable shell script and set it up as a launch
daemon or cron job – see above at Step 3 to learn how to run the shell script at a
regular interval using Lingon and launchd. If the app isn’t running, it will only return
the “grep YourAppName” process which is a good thing to log because if your app isn’t
open you won’t know how long it’s been out (nothing will be logged), but having the
grep process logged will at least tell you it was checking for it. Grep will also more
accurately tell you what time it checked – the other app will only give you a start time
and up time.
Let’s also take this one step further and say, hypothetically, that the Triplehead2Go dis-
play adapter you have is fairly wonky and you don’t always get the displays or projec-
tors to connect after reboot – or maybe a projector is shutting itself off and disrupting
things. Well we can log the currently available resolutions too! Try entering the line
below in your own terminal:� �
system_profiler SPDisplaysDataType� �
This will return a list of connected displays and some metadata about them including
resolution and names.
Let’s say you want to make sure you’re running a resolution of 3840×720 at all times…or
you want a log of resolution changes. You would do something like:� �
system_profiler SPDisplaysDataType | grep Resolution� �
This will return “Resolution: 3840×720 which you can combine with the above lines to
write it all to a text file. So here would be your shell script file if you wanted to record
the currently running processes and the current resolutions:� �

\#!/bin/bash
ps aux | grep 'YourAppName' >>

/Users/you/filepath/Install6ProcessLog.txt
system_profiler SPDisplaysDataType | grep Resolution >>

/Users/you/Dropbox/Install6ProcessLog.txt� �
523

24 Installation up 4evr - OSX

And now you’re feeling excited, maybe you want to grab a fullscreen screenshot at a
regular interval too, just to make sure there is no funkiness happening that you can’t
see…well you could add this line to the above as well:� �
screencapture ~/Desktop/$(date +%Y%m%d-%H%M%S).png� �
This will save a screenshot to the desktop (specify your own file path) with a formatted
date and time. You may want to do this every hour instead of every 5 minutes since
it’s a big chunk of data and it may cause some issue with your screens. As usual – test
before deploying!

Bonus points would be to create an auto-generated table and webpage that takes all of
this info and puts it into a nice view that you can use to check all of your installations
at a glance.

If the process logger isn’t enough, we can use what we learned in that process to actu-
ally set up a system to email you if something is amiss so you don’t have to manually
check it. We can do this all with the command line and internal tools, it’s just a more
involved setup. This is going to be fairly general and will need some tuning in your
specific case.

First you will need to configure postfix so you can easily send emails from the terminal –
follow the instructions here as closely as possible: http://benjaminrojas.net/configuring-
postfix-to-send-mail-from-mac-os-x-mountain-lion/

If you were using a gmail account you would do:

InstallationSupport@gmail.com

pass: yourpassword

The line in the passwd file mentioned in the article would be: smtp.gmail.com:587 in-
stallationSupport@gmail.com:yourpassword

Now send a test email to yourself by running: echo “Hello” | mail -s “test” “Installation-
Support@gmail.com”

Second step is to combine this new found ability to send emails from the Terminal with
a process to check if your application is still running…something like the below would
work with some tweaking for what you’re looking to do:� �
\#!/bin/sh
if [$(ps ax | grep -v grep | grep "YourApp.app" | wc -l) -eq 0] ;

#Replace YourApp.app with your own app's name
then

SUBJECT="Shit␣broke"
EMAIL="InstallationSupport" #this is the receiver

EMAILMESSAGE="This␣could␣be␣for␣adding␣an␣attachment/logfile"
echo "The␣program␣isn't␣open␣-␣trying␣to␣re-open">$SUBJECT
date | mail -s "$SUBJECT" "$EMAIL" "$EMAILMESSAGE"

524

24.8 Memory leak murderer

echo "YourApp␣not␣running.␣Opening..."

open /Applications/YourApp.app #reopen the app - set this to an
exact filepath

else
echo "YourApp␣is␣running"

fi� �
Now you just need to follow the instructions from Step 3 above to set this shell script
up to run with launchd – you can check it every 5 minutes and have it email you if it
crashed. You could also adapt the If statement to email you if the resolution isn’t right
or some other process condition.

24.8 Memory leak murderer

See this article¹³ about combining the above process with something that kills and
restarts an app if it crosses a memory usage threshold

Bonus – if using MadMapper – see this link¹⁴ for an AppleScript that will open MadMap-
per and have it enter fullscreen – and enter “OK” on a pesky dialog box.

24.9 Alternate resources

This is an amazing addon for openFrameworks apps that keeps your application open
even after a large range of failures: https://github.com/toolbits/ofxWatchdog

http://vormplus.be/blog/article/configuring-mac-os-x-for-interactive-installations

http://www.evsc.net/home/prep-windows-machine-for-fulltime-exhibition-setup

If you’re looking for help with this task with Windows, check out this awesome script
StayUp¹⁵ from Stephen Schieberl. Also forWindows: http://www.softpedia.com/get/System/File-
Management/Restart-on-Crash.shtml and this tool for scripting OS operations on
windows http://www.nirsoft.net/utils/nircmd.html

Check out this great step by step from EVSC: http://www.evsc.net/home/prep-windows-
machine-for-fulltime-exhibition-setup

¹³http://blairneal.com/blog/memory-leak-murderer/
¹⁴http://blairneal.com/blog/applescript-to-automatically-fullscreen-madmapper-for-installations/
¹⁵http://www.bantherewind.com/stayup

525

http://blairneal.com/blog/memory-leak-murderer/
http://blairneal.com/blog/applescript-to-automatically-fullscreen-madmapper-for-installations/
http://www.bantherewind.com/stayup

25 Installation up 4evr - Linux

by Arturo Castro¹

In linux you can install a barebones desktop which makes things way easier to setup
for installations, since among other things, you won’t need to worry about deactivating
annoying notifications. Also things like deactivating screen blanking can be done via
scripts so everything can just be copy and pasted and it’s easy to automate.

1. Install a linux distribution of your choice, for installations i usually use ubuntu
since the drivers for the graphics cards come preinstalled. While installing,
choose the option to login automatically to your user, that way the installation
can be started later just by turning on the computer.

2. Update all the packages to the latest versions. In ubuntu you can use the Software
Updater tool or via the command line do:� �

sudo apt-get update
sudo apt-get upgrade� �

3. Install the propietary drivers if you are using nvidia or ati cards. In latest ubuntu
versions you can install it through the “Software & Updates” tool in the Additional
Drivers tab

4. Ubuntu Unity, the default desktop is usually bloated with features that are not
used in a computer running an installation, i’ve been recently using Openbox
which also makes OpenGL slihtly faster since the desktop is not composited and
even solves some problems with vsync:� �

sudo apt-get install openbox� �
5. You also probably want to install openssh server to be able to access themachine

remotely:� �
sudo apt-get install openssh-server� �

6. Now download and install openFrameworks via the install_dependencies.sh
script

¹http://arturocastro.net

527

http://arturocastro.net

25 Installation up 4evr - Linux

7. Logout the session and choose openbox instead of unity in the greeter screen

8. You’ll get a grey screen with no decorations, bars… you can access a context menu
pressing with the right button of the mouse anywhere in the desktop although i
find it easier at this point to just log in through ssh from my laptop.

9. Once you’ve installed your application in the computer you probably want it to
start when the machine boots. With Openbox you just need to create a script in
~/.config/openbox/autostart there add the path to the binary for your application:� �

~/openFrameworks/apps/myapps/myapp/bin/myapp &� �� �
don't forget the & at the end so the application is started in the

background.� �
10. Disable the screen blank, in the same autostart file add this lines:� �

xset s off
xset -dpms� �
And that’s it now the computer will start you app everytime it starts. Most PC’s have a
BIOS setting where you can choose to start it automatically after a power cut so if the
installation is somewhere where they just cut the power at night it’ll immediately start
automatically in the morning when they turn it on again.

25.1 Some additional tricks:

• Linux can be installed in an SD card so you can save somemoney by buying a 16Gb
SD Card instead of an HD, most SD Cards are also pretty fast so boot times will be
really short. Just boot from a USB stick or CD and with the SD card in the reader,
if there’s no HD the ubuntu installer will just install in the sdcard. Installing to
an SD card makes it also really easy to make copies of an installation. In ubuntu
you can use the “Disks” tool to create and restore backups or from the command
line with:� �

sudo dd bs=4M if=/dev/sdcardDevice of=sdcardimg.bin� �� �
To create the backup where sdcardDevice is the name of the device

that you can find out by mounting the device and showing it's
properties from nautilus. And then:� �� �

sudo dd bs=4M if=sdcardimg.bin of=/dev/sdcardDevice� �

528

25.1 Some additional tricks:

� �
To restore the backup. If you have 2 sdcard readers you can just

copy from one to another using dd� �
• When accesing a machine via ssh you can start applications that have a graphical
output if you set the display first:� �

export DISPLAY=:0� �� �
also you can tunnel the graphical output to your own computer if you

add -X when starting the ssh session� �
• You can make an application restart in case it crashes really easy from the same
autostart script:� �

~/openFrameworks/apps/myapps/myapp/bin/myapp.sh &� �� �
and now create a myapp.sh script with this contents:� �� �
cd ~/openFrameworks/apps/myapps/myapp/bin/
ret=1
while [ret -neq 0]; do

./myapp
ret=$?

done� �� �
that will restart your application in case it crashes and you can

still quit it pressing escape (unless your app crashes when
exiting)� �

529

	Foreword
	about this book
	credits

	philosophy
	Collaborative
	Simplicity
	Consistent and Intuitive
	Cross-platform
	Powerful
	Extensible
	Do it with others (DIWO)

	OF structure
	project generator
	.h and .cpp
	setup/update/draw
	preprocessor/compiler/linker
	preprocess
	compile
	link

	C++ Language Basics
	Look Alive!
	Iteration
	Compiling My First App
	Interlude on Typography
	Comments

	Beyond Hello World
	What’s with the # ?
	Namespaces at First Glance

	Functions
	Custom Functions
	Encapsulation of Complexity
	Variables (part 1)
	Naming your variable
	Naming conventions
	Variables change

	Conclusion
	PS.

	OF structure
	First things first
	Welcome to your new kitchen
	IDE:
	Apple Xcode
	Microsoft Visual Studio 2012 Express
	Code::Blocks

	Running examples
	OF folder structure
	Addons
	Apps
	Examples
	libs
	other
	projectGenerator

	The OF Pantry:
	What is inside the OF pantry
	Addons

	Graphics
	Brushes with Basic Shapes
	Basic Shapes
	Brushes from Basic Shapes
	Single Rectangle Brush: Using the Mouse
	Bursting Rectangle Brush: Creating Randomized Bursts
	Glowing Circle Brush: Using Transparency and Color
	Star Line Brush: Working with a Linear Map
	Fleeing Triangle Brush: Vectors and Rotations
	Raster Graphics: Taking a Snapshot

	Brushes from Freeform Shapes
	Basic Polylines
	Building a Brush from Polylines
	Polyline Pen: Tracking the Mouse
	Polyline Brushes: Points, Normals and Tangents
	Vector Graphics: Taking a Snapshot (Part 2)

	Moving The World
	Translating: Stick Family
	Rotating and Scaling: Spiraling Rectangles

	Next Steps

	Ooops! = Object Oriented Programming + Classes
	Overview
	What is OOP
	How to build your own Classes (simple Class)
	make an Object from your Class
	make objects from your Class
	make more Objects from your Class
	make even more Objects from your Class: properties and constructors
	make even more Objects from your Class
	Make and delete as you wish - using vectors
	Quick intro to polymorphism (inheritance)

	Animation
	Background
	Animation in OF / useful concepts:
	Draw cycle
	Variables
	Frame rate
	Time functions
	Objects

	linear movement
	getting from point a to point b
	Curves
	Zeno

	Function based movement
	Sine and Cosine
	Simple examples
	Circular movement
	Lisajous figures

	Noise

	Simulation
	particle class
	simple forces, repulsion and attraction
	particle particle interaciton
	local interactions lead to global behavior

	where to go further
	physics and animation libraries

	Information Visualization Chapter
	Intro
	What is data? What is information?
	Steps of visualising data

	Working with data files in OpenFrameworks
	Common data file structures: tsv, csv, xml, json
	Example - Visualising Time Series Plot
	ofBuffer Class
	Buffer Functions

	More Useful functions for working with data
	Conversion functions (ofSplitString, ofToString, ofToInt)

	Working with APIs
	What are APIs?

	Further resources
	References

	Experimental Game Development in openFrameworks
	Popular games in open frameworks
	How do game developers actually make games?
	So what is OSC, anyway?
	Our basic game–& making it not-so-basic
	Gamestates
	Player movement
	Adding adversaries
	Collisions
	Our game’s brain
	Bonus lives
	Let’s get visual
	Linking oF and OSC
	Resouces
	About us

	Image Processing and Computer Vision
	Preliminaries to Image Processing
	Digital image acquisition and data structures
	Loading and Displaying an Image
	Where (Else) Images Come From
	Acquiring and Displaying a Webcam Image
	Pixels in Memory
	Grayscale Pixels and Array Indices
	Finding the Brightest Pixel in an Image
	Three-Channel (RGB) Images.
	Other Kinds of Image Formats and Containers
	RGB, grayscale, and other color space conversions

	Image arithmetic: mathematical operations on images
	Filtering and Noise Removal Convolution Filtering
	3.2. Detecting and Locating Presence and Motion
	3.2.1. Detecting presence with Background subtraction

	3.3. Image Processing Refinements
	3.3.1. Using a running average of background
	3.3.2. Erosion, dilation, median to remove noise after binarization
	3.3.3. Combining presence and motion in a weighted average
	3.3.4. Compensating for perspectival distortion and lens distortion

	3.4. Thresholding Refinements
	A basic face detector.
	SIDEBAR

	4.4. Suggestions for Further Experimentation
	Suggestions for Further Experimentation
	A Slit-Scanner.
	Text Rain by Camille Utterback and Romy Achituv (1999).

	hardware
	introduction
	getting started with serial communication
	digital and analog communication
	using serial for communication between arduino and openframeworks
	Lights On - controlling hardware via DMX
	Raspberry Pi - getting your OF app into small spaces

	Sound
	Getting Started With Sound Files
	Getting Started With the Sound Stream
	Why -1 to 1?
	Time Domain vs Frequency Domain
	Reacting to Live Audio
	RMS
	Onset Detection (aka Beat Detection)
	FFT

	Synthesizing Audio
	Waveforms
	Envelopes
	Frequency Control

	Audio Gotchas
	“Popping”
	“Clipping” / Distortion
	Latency

	Network
	TCP vs UDP
	TCP
	UDP

	OSC

	Advanced graphics
	2D, immediate mode vs ofPolyline/ofPath
	ofPolyline
	ofPath

	3D
	Transformation matrices
	ofCamera
	ofMesh
	ofVboMesh
	of3dPrimitive

	That Math Chapter: From 1D to 4D
	How Artists Approach Math
	About this Chapter
	One Dimension: Using Change
	Interpolation
	Linear Interpolation: The !ofLerp!
	Note: What does linear really mean?
	Exercise: Save NASA’s Mars Lander

	Affine Mapping: The !ofMap!
	Range Utilities
	Clamping
	Range Checking

	Beyond Linear: Changing Change
	Quadratic and Cubic Change Rates
	…And So On

	Splines
	Tweening
	Other Types of Change

	More Dimensions: Some Linear Algebra
	The Vector
	Vector Algebra
	Scalar Multiplication
	Vector Addition
	Note: C++ Operator Overloading
	Distance Between Points
	Vector Products: There’s More Than One
	The Dot Product
	Example: Finding out if a point is above or below a plane

	The Matrix™
	Matrix Multiplication as a dot product
	Identity
	Scale
	Skew matrices
	Rotation matrices
	3D Rotation Matrices

	Matrix Algebra
	Commmumamitativiwha?
	What else is weird?

	“The Full Stack”
	Translation matrices
	Homogenous coordinates: Hacking 3d in 4d

	SRT (Scale-Rotate-Translate) operations
	Using Matrices and Quaternions in openFrameworks

	Memory in C++
	Computer memory and variables
	Stack variables, variables in functions vs variables in objects
	Pointers and references
	Variables in the heap
	Memory structures, arrays and vectors
	Other memory structures, lists and maps
	smart pointers
	unique_ptr
	shared_ptr

	Threads
	What’s a thread and when to use it
	ofThread
	Threads and openGL
	ofMutex
	External threads and double buffering
	ofScopedLock
	Poco::Condition
	Conclusion

	ofxiOS
	OpenFrameworks on iOS devices.
	Intro
	Intro to Objective-C
	Obj-C Class structure
	Make new Obj-C Class in XCode
	Variables and Methods
	Memory Management
	Ins and Outs
	Properties
	Delegates
	Automatic Reference Counting (ARC)
	Mixing Obj-C and C++ (Objective-C++)
	TODO

	Under the Hood
	ofxiOSApp
	OpenGL ES and iOS

	OF & UIKit
	Media Playback and Capture
	ofxiOSVideoPlayer
	ofxiOSVideoGrabber
	ofxiOSSoundPlayer and ofxOpenALSoundPlayer
	ofxiOSSoundStream

	Life Hacks
	App Store
	Case Studies
	Blah blah
	!auto!
	How this helps
	Watch out for this
	!auto! is not a new type
	You can’t use !auto! in function arguments
	You can’t use !auto! as a function return type

	!const! and references
	Summary

	for (thing : things)
	Summary

	override
	Summary

	Lambda functions
	Worker threads
	Callbacks
	Summary

	Case Study : Line Segments Space
	Foreward
	Artist statement
	Digital Emulsion
	Structured Light

	Technical solution
	Constraints
	System overview
	Software frameworks
	Hardware

	Design time applications
	addLinesToRoom
	Laying down lines
	Shadows
	Shift to zoom
	Layers feature
	 Final notes

	Case Study: Choreographies for Humans and Stars
	Project Overview
	Call, Competition and Commission
	Timeline
	Everyone involved

	Ideation and Prototyping
	Challenges in the Interaction design
	Outlining the dance zone
	Producing video content

	Finding the Technical Solutions
	Put the Projector with the animals
	Camera style and placement
	Network setup and negotiations

	Choice of tracking software
	Method of Tracking
	Tracking challenges

	Choice of visualization software
	Additional software used

	Developing the Visualization Software
	Development setup
	Quick summary of what the app does
	Sequential structure
	Incoming tracking data
	Dealing with split message blocks and framerate differences
	Storing and updating tracking data
	Perspective transformation

	Implementing video content
	The quest for the right codec
	Dynamic video elements
	Preloading versus dynamic loading

	Event-driven animation
	Debug screen and finetuning interaction

	Fail-safes and dirty fixes
	First: Keep your App alive
	Second: Framerate cheats
	Always: Investigate
	Finally: Optimize

	Results and Reception

	Case Study: Anthropocene, an interactive film installation for Greenpeace as part of their field at Glastonbury 2013
	Project Overview
	The Project
	Initial Brief from Client
	Our response
	Audio negotiations
	Supplier change, Final Budget Negotiations and Interaction Plan
	Interactive Background to Delay Maps, and the possibility of generating a Delay Map from the Kinect Depth Image
	Actual Timeline

	Development
	Development Hardware and Software setup
	Explanation and Discussion of Development in Detail
	ofxKinect, as a possible input to ofxSlitScan
	ofxSlitScan, using PNG’s and moving to generating realtime delay maps, making a Aurora
	ofxBox2d, making ice, previous projects with Todd Vanderlin
	ofxTimeline, understanding how cuing works
	ofxGui, running the Latest branch from Github, multiple input methods and GUI addons
	ofxOpticalFlowFarneback, making a polar bear

	XML Issues around the Naming of Scenes
	Video Performance, using the HighPerformanceExample
	Counting the items in an Enum
	Sequencing

	Show time
	Post Event
	Testimony from Show Operators
	Open Source discussions with Client
	Re-running remotely in Australia and New Zealand
	Future development
	Social interaction
	Broadcast
	Raspberry Pi

	Conclusion

	Team and Credits
	Hardware selection
	Appendix 1: Code structure, main loop
	Appendix 2: Modes, with screen grabs and code explanation
	BLANK
	GUI
	VIDEO
	VIDEOCIRCLES
	KINECTPOINTCLOUD
	SLITSCANBASIC
	SLITSCANKINECTDEPTHGREY
	SPARKLE
	VERTICALMIRROR
	HORIZONTALMIRROR
	KALEIDOSCOPE
	COLOURFUR
	DEPTH
	SHATTER
	SELFSLITSCAN
	SPIKYBLOBSLITSCAN
	MIRRORKALEIDOSCOPE
	PARTICLES
	WHITEFUR
	PAINT

	Appendix 3: Edited development notes
	29th May 2013
	30th May 2013
	31st May 2013
	6th June 2013
	12th June 2013
	13th June 2013
	16th June 2013
	17th June 2013
	18th June 2013
	20th June 2013
	21st June 2013
	23rd June 2013
	24th June 2013
	25th June 2013
	26th June 2013

	Version control with Git
	What is version control, and why should you use it?
	Different version control systems
	Introduction to Git
	Basic concepts
	Getting started: project setup
	!.gitignore!
	!git status!
	!git add!
	!git commit!

	First edits
	!git diff!

	Branches and merging
	!git branch! and !git checkout!
	Merging branches
	!git log!
	!git merge!
	!git reset!
	Merge conflicts
	!git tag!

	Remote repositories and Github
	Setting up and remotes
	Fetching and pulling
	Pushing
	Pull requests

	Popular GUI clients
	Conclusion
	Tips & tricks
	Further reading

	ofSketch
	What is ofSketch?
	What is ofSketch Good For?
	What is ofSketch NOT Good For?
	How does ofSketch work?

	Download
	Getting Started With ofSketch
	ofSketch Style Code
	Project File
	Classes
	Includes
	Examples

	Sketch Format
	Remote Coding
	Future
	App Export
	Project File Export
	Custom .h & .cpp Files
	Clang Indexed Autocomplete

	Installation up 4evr - OSX
	Step 1: Prep your software and the computer
	Step 2: Boot into your software
	Step 3: Keep it up (champ!)
	Step 4: Reboot periodically
	Step 5: Check in on it from afar
	Step 6: Test, test, test.
	Additional Tips: Logging
	Memory leak murderer
	Alternate resources

	Installation up 4evr - Linux
	Some additional tricks:

