gemhead
gemwin
gemmouse,

gemkeyboard

=
gemkeynamg

Ref :

Controlls

the start of rendering chain

the window manager

outputs the mouse position and
buttons in the GEM window

outputs the keycode of a key prassed
when you are in the GEM window (there
might be different keycodes in Windows/Linux)

outputs a symbolic description of a key
pressed when you are in the GEM window (there
might be different symbols in Windows/Linux)

http: //gem. 1em. at /documentat Lon/manual /manual /List -of -gem-ob

jects

accumrotate
=

Slpha
Embier‘ltl=l
o
Zamera
Zolo:

£olorRGB
depth

diffuse

diffuseRGB
emission

emissionRGE

=

linear_path

ortho

ol ygan_smooth
rotate

rotateXYZ

scale
=

ScaleXYZ

Separator
= =
shininess
=

Specular

== ===

SpecularRGB

Spline path

translate
=

LranslateXYZ

Manipulators

accumulate a rotation

enable/disable alpha blending

set the ambient color with a wector

set the ambient color with 3 discrete values
camera

set the color with a vectar

set the color with 3 discrete walues
enablesdisable depth testing

set the diffuse color with a vector

set the diffuse color with 3 discrete values

set the emissive color with a vector
set the emissive color with 3 discrete wvalues

generate a path from an array of points

change the wiew to orthogonal, with the viewport

the size of the window

turn on anti-aliasing for the objects below
rotate with an angle and vector

rotate with 3 discrete values

scale with a wector

scale with 3 discrete walues

push the OpenGL state for the rest of the chain
and pop when done

set the shininess of an object

set the specular color with a vector

set the specular color with 2 discrete values
generate a spline from an array of knots
translate with a vector

translate with 3 discrete walues

= =
circle
=
[
colorSquare
=
RS
cone
=
==
cube
=
[
cuboid
=
=

curve
=

= =

curvesd
£ylinder
disk

AmageVert
model

EU'L i imode'||.=

SR8

newiave
=

Zolygon

BrimTri
rectangle

=i

TLipple

Square
Leapot
text2d
=
Lext3d
Ltextextruded

textoutline

Lriangle

Geos
render a circle
render a colored square [ewtl.
render a cone
render a cube
render a box
render a Bezier curve
render a surface
render a cylinder
render a disk
make pixel colors to a height field map
render an Alias|Wavefront model

render a series of Alias|Wavefront models,
render by number

render a wave (that is evolving over time)
render a polygon
a triangle primitive

render a rectangle

a rectangle with distorted {over time)
texture-coordinates

a grid where you can move one of the grid-points
render a number of sliding squares

render a sphere

render a square

render a teapot

render 2-D text (a bitmap)

render 3-D text (polygonal)

render an extruded 3D-text

render outlined text (polygonal)

render a triangle

with color gradients)

= =
circle
=
N
colorSquare
=
R
cone
=
==
cube
=
[
cuboid
22
=

cLrve
=

curveid
cylinder
disk

AmageVert
madel

Eul i j.m::u::le'll.=I

R

newlave
=

polygeon

primTri
e

rectangle

(S8

Tipple

Square
Eemet]
Zext2d=
Zext3d=

Zextext r'l.ldvedI=I

textoutline

Lriangle

Geos

render a circle

render a colored square (evtl. with color gradients)

render a cane

render a cube

render a box

rendsr @ Bezier curve

render a surface

render 3 cylinder

render a disk

make pixel colors to a height field map
render an Alias|Wavefront model

render a series of Alias|Wavefront models,
render by number

render a wave (that is evolwing over tims)
rendsr = polygen
a triangle primitive

render 3 rectangle

a rectangle with distorted [over time)
texture-coordinates

= grid where you can move one of the grid-points

render a number of sliding squares
render a sphere

render a square

render a teapot

render 2-D text (a bitmap)

rendsr 3-D text (polygonal)

render an extruded 3D-text

render outlined text (polygonal)

render a triangle

part_head
part_color

part_damp

part_draw

Za rt_f ::I'L'l.t:u'\wl:I
Zar‘t_gr‘a\.‘it;I
Bart_info,
lBart_killold
art_killslow
Za rt_o rT::itpoint=
Za rt_render

= =
part_size
= = o= o=

part_source

[part_targetcolor

[part_targatsize
part_welocity

= =
part_vertex

Light

orld light

Particles
The start of a particle group
Set the range of colors for the new particles

set the damping for particles

Apply the actions and render the particles.
Mhccepts a message "draw Line" or "draw
point" to change the drawing style.

Particles will follow each other like a snake
Hawve the particles accelerate in a direction

get the information (position, color, size,
of each particle

Remove particles past a certain age
Remove particles below a3 certain speed
Orbit the particles around a specified point

render the remaining gem-tres as particles.

Set the size of new particles
Generate particles

Change color of the particles toward
the specified color

Change size of the particles toward the
specified size

Set the wvelocity domain (distribution Llike
COME and the appropriate arguments)

emit a single particle

Nongeos

make = point light

make a light at infinity

Zix_Qgrey
Zix_a_?gre;:'l
Z_i.x_a::lt:l|=I
Zix_aging
lix_alpha
Zix_bac I-‘:gr'oundI=I
Zix_?acklmightm
Zix_biquad
Z.‘i.x_b?.ltmasl-:I=I
pix blob
[Bix_buf
Zix_buffer'
Zix_buffer'_ r'ea?
Zix_buffer'_w r'it:
Z.i.x_rc|'1|"c:-ma_l‘:e3|||='I

pix_coloralpha

= =
pix_colormatrix
= =
pix_calor
e
pix_colorreduce
= =
pix_composite
=
pix_convolve
= =
pix_coordinate

Bix_crop

Pixes

pix_2grey

convert rgb pixels to grey based on alpha channel

add two pixes together

super2-like aging effact

set the alpha walue of a pix

let through enly pixels that differ from a static

"background" image

a3 backlight photeo effect
2p2z-filter for subsequent images
apply a bitmask to = pix

get center of gravity

buffer a pix

storage room for pixes (Like [table] for floats)

put/get pixes into/from a pix_buffer

color keying (like "blue-box")

set the alpha-channgl of a pix as a mean-valus of the

colar-components

recombine the RGBA-channels with matrix-operation

reduce the number of colors (statistically)
composite two pixes together
comment

convolve a pix with a kernal

set the texture coordinates

get a sub-image of a pix

Pixes

2

=.
Bix_curve

pix_data,
Zix_dela:l
[pix_diff]
Zix_(:lc-tl=l
Zix_d raw
Zix_dumgl

===

pix_ductons

[gix_filp
lpix_flip|
Zix_g rey
Zixj;al il’:;: on:
Zix_hist]

Bix_hsvZrgb
Bix_image
Bix_imageInPlace
pix_info
pix_invert
]
pix_kaleidoscope
pix_levels
Bix_lumaoffset
Bix_mask
Bix_metaimage

Bix_mix

apply color-curves onto a pix
get pixel data information

frame-wise delay

get absolute difference of two pixzes

rasterize a pix with big dots

draw a pix

dump the pixel-data as a long list of floats

reduce the number of colers by thresholding

use a movie file as a pix source for image-processing
flip the pixels of a pix

convert any plix into greyscale colorspace

rasterize a pix like it was printed in a newspaper

get the histogram of a pix

transform a pix from HSV-colorspace into RGB-colorspace

load in an image file

load = series of image files directly into texture-buffer,
display by number

get information about the pix (like dimension, colorspace,
N
invert a pix

as if you were Looking at the pix through a kaleidoscope

lewvel adjustment

y-offset pixels depending on their Luminance

mask a pix based on another pix

recompose an image out of smaller wversions of itself

mix to pixes together

Pixes_ 3

Bix_motienblur

= =
glx movie
==

= =

pix_movement
= =
Bix_multiply
pix_multiimage
pix_normalize
pix_offsat
Bix pixdsioy
pix_puzzle
pix_rds
pix_rectangle
pix_refraction
Bix_resize
=
Bix_rgbZhsv
pix_rgba
= =
Bix_roll
=
pix_rtx

= =
Bix_scanline

pix_set

Bix_sig2pix~
pix_snap

pix_snap2tex

Bix_subtract

motionblur an image

use a movie file as a pix source and load it immediately

inte the texture-buffer

set the alpha-channel with respect to the change between

two frames

multiply two pixes

load in a series of image files, display by number
normalize 3 pix

add an offset to a pix (wrapping instead of clipping)
interpret a pix as 4 (RGBA) audic-signals

shuffle an image

genarate a Random Dot Stersogram out of the image |aka:
Magic Eye (tml)

generate a rectangle in a pix buffer

break up an image into coloured "glass-bricks"
resize a pix to next power of 2

transform a pix from RGE-colorspace into HSV-colorspace
transform a pix of any format into RGEA
(sc)lroll through an image (wrapping)

swap time-axis and x-axis

take every nth line of the original image

set the pixel-data with a long list of floats
interpret 4 audioc-signals as (RGBA) image-data
capture the render window into a pix

capture the render window directly as a texture

subtract two plxes

Pixes_ 4

==

pix tIIR

pix_takealpha

= =

Bix_texturg

pix_threshold

=
pix_videg,
= ==

Bix_write

Bix_zoom

time-base Infinite-Impulse-Response filter (for
motion-bluring, ...) with settable number of poles/zeros

take the alpha channel of one pix and put it into another
pix

use a plx as a texture map
apply a threshold to a pix

use a video camera as a plx source

capture the render window to disk

zoom into & pix (using OpenGlL)

